The structure of the phenol-soluble polysaccharide from Shewanella putrefaciens strain A6 has been elucidated. Chemical modifications of the polymer in conjunction with 1H and 13C NMR spectroscopy, including 2D techniques, were employed in the analysis. It is concluded that the repeating unit is composed of two nine-carbon sugars as follows: -->4)-alpha-NonpA-(2-->3)-beta-Sugp-(1--> where alpha-NonpA is 5-acetamido-7-acetamidino-8-O-acetyl-3,5,7,9-tetradeoxy-L-glycero-alpha-D-galacto-non-2-ulosonic acid (8eLeg) and beta-Sugp is 2-acetamido-2,6-dideoxy-4-C-(3'-carboxamide-2',2'-dihydroxypropyl)-beta-D-galactopyranose, with the proposed name Shewanellose (She).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0008-6215(02)00101-5DOI Listing

Publication Analysis

Top Keywords

structure phenol-soluble
8
phenol-soluble polysaccharide
8
polysaccharide shewanella
8
shewanella putrefaciens
8
putrefaciens strain
8
strain structure
4
strain elucidated
4
elucidated chemical
4
chemical modifications
4
modifications polymer
4

Similar Publications

Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms.

Colloids Surf B Biointerfaces

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.

View Article and Find Full Text PDF

Amyloid transformations of phenol soluble modulin α1 in Staphylococcus aureus and their modulation deploying a prenylated chalcone.

Sci Rep

August 2024

ViStA Laboratory, Department of Biological Sciences, BITS, Pilani - KK Birla Goa Campus, Goa, 403726, India.

Phenol soluble modulins (PSMs) are small amphipathic peptides involved in a series of biological functions governing staphylococcal pathogenesis, primarily by facilitating the formation of an extracellular fibril structure with amyloid-like properties. This fibrillar architecture stabilizes the staphylococcal biofilm making it resilient to antibiotic treatment. Our study aims to abrogate the amyloid fibrillation of PSM α1 with novel insights on the amyloid modulatory potential of a prenylated chalcone, Isobavachalcone (IBC).

View Article and Find Full Text PDF

Structure of biofilm-forming functional amyloid PSMα1 from .

Proc Natl Acad Sci U S A

August 2024

Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261.

Biofilm-protected pathogenic causes chronic infections that are difficult to treat. An essential building block of these biofilms are functional amyloid fibrils that assemble from phenol-soluble modulins (PSMs). PSMα1 cross-seeds other PSMs into cross-β amyloid folds and is therefore a key element in initiating biofilm formation.

View Article and Find Full Text PDF

The virulence of , a multi-drug resistant pathogen, notably depends on the expression of the phenol soluble modulins α3 (PSMα3) peptides, able to self-assemble into amyloid-like cross-α fibrils. Despite remarkable advances evidencing the crucial, yet insufficient, role of fibrils in PSMα3 cytotoxic activities towards host cells, the relationship between its molecular structures, assembly propensities, and modes of action remains an open intriguing problem. In this study, combining atomic force microscopy (AFM) imaging and infrared spectroscopy, we first demonstrated that the charge provided by the N-terminal capping of PSMα3 alters its interactions with model membranes of controlled lipid composition without compromising its fibrillation kinetics or morphology.

View Article and Find Full Text PDF

A Targetable N-Terminal Motif Orchestrates α-Synuclein Oligomer-to-Fibril Conversion.

J Am Chem Soc

May 2024

Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain.

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!