Objective: Atrial fibrillation (AF) is characterised by electrical, gap junctional and structural remodelling. However, the underlying molecular mechanisms of these phenomena are largely unknown. To get more insight into atrial remodelling at the molecular level we have analysed changes in gene expression during sustained AF in the goat.
Methods: The differential display technique (DD) was used to identify genes differentially expressed during sustained AF (13.9 +/- 5.2 weeks) as compared to sinus rhythm (SR). Dot-blot analysis was performed to confirm the altered gene expression and to establish the changes in expression after 1, 2, 4, 8 and 16 weeks of AF. Immunohistochemistry and western blotting were used to validate the DD approach and to further characterise the changed expression of the beta-myosin heavy chain gene at the protein level.
Results: Of the approximately 125 fragments that showed changed expression levels during AF, 34 were cloned and sequenced. Twenty-one of these represented known genes involved in cardiomyocyte structure, metabolism, expression regulation, or differentiation status. The changed expression of 70% of the isolated clones could be confirmed by dot-blot analysis. In addition, time course analysis revealed different profiles of expression as well as transient re-expression of genes, e.g. the gene for hypoxia-inducible factor 1 alpha during the first week of AF. During sustained AF the frequency of cardiomyocytes expressing beta myosin heavy chain (beta MHC) increased from 21.8 +/- 2.1 to 47.9 +/- 2.5% (S.E.M.). The overall expression of MHC (alpha+beta) appeared to be down-regulated during AF.
Conclusions: AF is accompanied by changes in expression of proteins involved in cellular structure, metabolism, gene expression regulation and (de-)differentiation. Most alterations in expression confirm or support the hypothesis of cardiomyocyte de-differentiation. Furthermore, the results suggest a role for ischemic stress in the early response of cardiomyocytes to AF, possibly via activation of hypoxia-inducible factor 1 alpha.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6363(02)00260-2 | DOI Listing |
J Plant Res
January 2025
College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224002, Jiangsu, China.
Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:
Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!