Planar polarity: photoreceptors on a high fat diet.

Curr Biol

Centre for Developmental Genetics, School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.

Published: June 2002

Differential activity of Frizzled in the R3/R4 photo-receptors of Drosophila regulates the orientation of ommatidia. New evidence suggests that the cadherins Dachsous and Fat act upstream of Frizzled in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(02)00879-5DOI Listing

Publication Analysis

Top Keywords

planar polarity
4
polarity photoreceptors
4
photoreceptors high
4
high fat
4
fat diet
4
diet differential
4
differential activity
4
activity frizzled
4
frizzled r3/r4
4
r3/r4 photo-receptors
4

Similar Publications

In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.

View Article and Find Full Text PDF

We provide the first direct experimental evidence for the reorientation of liquid crystals by polarized radiation from a conventional, low power, oscillator-based terahertz time-domain spectrometer. Using a terahertz pump - optical probe setup, we observed that the reorientation occurs locally through the resonant amplification of the terahertz field in a specially designed planar metamaterial, adjacent to the liquid crystal layer, and increases with increasing incident terahertz intensity. Our work thus demonstrates that it is possible to induce strong optical nonlinearity in liquid crystals in the terahertz part of the spectrum, paving the way toward the development of new all-optical active terahertz devices as well as electric field sensors for localized resonant systems.

View Article and Find Full Text PDF

In recent years, studies of surfaces at more realistic conditions has advanced significantly, leading to an increased understanding of surface dynamics under reaction conditions. The development has mainly been due to the development of new experimental techniques or new experimental approaches. Techniques such as High Pressure Scanning Tunneling/Force Microscopy (HPSTM/HPAFM), Ambient Pressure X-ray Photo emission Spectroscopy (APXPS), Surface X-Ray Diffraction (SXRD), Polarization-Modulation InfraRed Reflection Absorption Spectroscopy (PMIRRAS) and Planar Laser Induced Fluorescence (PLIF) at semi-realistic conditions has been used to study planar model catalysts or industrial materials under operating conditions.

View Article and Find Full Text PDF

Cochlear Organ Dissection, Immunostaining, and Confocal Imaging in Mice.

Bio Protoc

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!