Objective: To measure apolipoproteins in cerebrospinal fluid (CSF) from healthy mares and to determine whether CSF concentrations of apolipoproteins change during pregnancy and lactation.
Animals: 5 healthy pregnant mares.
Procedure: 2 sets of CSF samples were obtained; initial samples were obtained 10 to 30 days before parturition (mean, 18 days; median, 17 days), and second samples were obtained 19 to 26 days after parturition (mean, 23 days; median, 23 days). Cerebrospinal fluid was collected from the lumbosacral subarachnoid space of standing horses by use of routine collection techniques. Cerebrospinal fluid cholesterol concentrations were measured by use of a sensitive enzymatic assay. Ultracentrifugal fractions of CSF lipoproteins were characterized by determining the distribution of apolipoproteins, using polyacrylamide gel electrophoresis.
Results: Analyses of isolated ultracentrifugal fractions by polyacrylamide gel electrophoresis revealed 2 apolipoproteins, with the expected molecular weights for apolipoprotein E and apolipoprotein A-I. No significant differences were observed between pre- and postpartum values in mares. The concentration of cholesterol in CSF fluid of mares was comparable to values reported in other mammals.
Conclusions And Clinical Relevance: Apolipoprotein E in CSF of horses is a major apolipoprotein associated with high-density lipoproteins, which is similar to findings in other mammals. Additional characterization of the role of apolipoproteins in mammalian CSF may provide critical insight into various degenerative neurologic disease processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.2002.63.886 | DOI Listing |
BMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
Purpose: The escalating number of endoscopic skull base procedures necessitates exploring additional materials to reduce postoperative cerebrospinal fluid (CSF) leaks in revision or staged surgeries. This study evaluates the effectiveness of reused nasoseptal flaps (NSFs) in such clinical scenarios.
Methods: A retrospective review was conducted on patients who previously underwent surgery involving NSFs and later had revision or secondary skull base surgeries via endoscopic endonasal approaches (EEAs) at a tertiary medical center.
J Prev Alzheimers Dis
February 2025
Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:
Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.
Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.
J Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
J Psychiatr Res
January 2025
Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!