Postprandial changes in serum unconjugated bile acid concentrations in healthy beagles.

Am J Vet Res

Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Texas A & M University, College Station 77843-4474, USA.

Published: June 2002

Objective: To investigate postprandial changes in serum concentrations of unconjugated bile acids in healthy Beagles.

Animals: 7 healthy Beagles.

Procedure: Blood samples were obtained from dogs at regular intervals up to 8 hours after consumption of a meal. Serum concentrations of 5 unconjugated bile acids were determined at each time point, using gas chromatography-mass spectrometry with selected ion monitoring.

Results: Total serum unconjugated bile acid concentration was significantly increased, relative to baseline values, at 360, 420, and 480 minutes after feeding. Unconjugated cholic acid was significantly increased at 360, 420, and 480 minutes. The proportion of total unconjugated bile acids represented by cholic acid was significantly increased at 240 to 480 minutes. Deoxycholic acid was significantly increased at 360 and 420 minutes. Chenodeoxycholic acid was significantly increased at 360 to 480 minutes. Lithocholic acid was significantly increased at 180 minutes, whereas no significant changes in ursodeoxycholic acid were detected at any time point.

Conclusions And Clinical Relevance: Healthy Beagles had significant increases in serum concentrations and changes in the profile of unconjugated bile acids after a meal. These increases persisted > 8 hours, indicating that prolonged withholding of food is necessary to avoid the risk of a false-positive diagnosis when assessing serum unconjugated bile acid concentrations in dogs.

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.2002.63.789DOI Listing

Publication Analysis

Top Keywords

unconjugated bile
28
acid increased
20
bile acids
16
480 minutes
16
serum unconjugated
12
bile acid
12
serum concentrations
12
360 420
12
increased 360
12
acid
9

Similar Publications

Studying the intracellular bile acid concentration and toxicity in drug-induced cholestasis: Comprehensive LC-MS/MS analysis with human liver slices.

Toxicol In Vitro

January 2025

University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. Electronic address:

Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture.

View Article and Find Full Text PDF

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats.

View Article and Find Full Text PDF

Bile acids in follicular fluid: potential new therapeutic targets and predictive markers for women with diminished ovarian reserve.

J Ovarian Res

December 2024

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.

Objective: To investigate the changes in bile acid (BA) metabolites within the follicular fluid (FF) of patients with diminished ovarian reserve (DOR) and to identify novel diagnostic markers that could facilitate early detection and intervention in DOR patients.

Design: A total of 182 patients undergoing assisted reproductive technology (ART) were enrolled and categorized into the normal ovarian reserve (NOR) group (n = 91) or the DOR group (n = 91) to measure BA levels in FF. To identify the changes in granulosa cells (GCs), we collected GCs from an additional 7 groups of patients for transcriptome sequencing.

View Article and Find Full Text PDF

Objective: To characterize the bile acid metabolomic profiles of umbilical cord blood and meconium in healthy newborns.

Methods: Fifteen healthy newborns, which born in the Obstetrics Department of the Affiliated Hospital of Southwest Medical University between July 1 and August 31, 2023, were selected as study subjects. Umbilical cord blood and meconium samples were collected, and bile acid metabolomics were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!