Recognition of a virus-encoded ligand by a natural killer cell activation receptor.

Proc Natl Acad Sci U S A

Howard Hughes Medical Institute, and Division of Rheumatology, Department of Medicine, Washington University School of Medicine, and Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

Published: June 2002

Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124383PMC
http://dx.doi.org/10.1073/pnas.092258599DOI Listing

Publication Analysis

Top Keywords

natural killer
8
cell activation
8
activation receptor
8
predicted mhc-like
8
mhc-like folds
8
cells
6
recognition virus-encoded
4
ligand
4
virus-encoded ligand
4
ligand natural
4

Similar Publications

Background: Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC.

View Article and Find Full Text PDF

Microbiome and Mucosal Immunity in the Intestinal Tract.

In Vivo

December 2024

Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany

The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance.

View Article and Find Full Text PDF

Myeloid cell leukemia 1 (MCL-1) is a member of the B-cell lymphoma 2 protein family and has anti-apoptotic functions. Deregulation of MCL-1 has been reported in several cancers, including lung and breast cancer. In the present study, the association of MCL-1 expression with molecular features in colorectal cancer (CRC) has been highlighted.

View Article and Find Full Text PDF

Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance.

View Article and Find Full Text PDF

The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!