Two ferrocene-labelled analogues of dTTP, 5-(3-ferrocenecarboxamidopropenyl-1) 2'-deoxyuridine 5'-triphosphate (Fc1-dUTP) and 5-(3-ferroceneacet-amidopropenyl-1) 2'-deoxyuridine 5'-triphosphate (Fc2-dUTP) have been produced to demonstrate the incorporation of redox labels into DNA by polymerases. Cyclic voltammetry indicates that the ferrocenyl moieties display reversible redox behaviour in aqueous buffer with E(1/2) values of 398 (Fc1-dUTP) and 260 mV (Fc2-dUTP) versus Ag/AgCl. Primer extension by the proofreading enzymes Klenow fragment and T4 DNA polymerase shows that Fc1-dUTP is efficiently incorporated into DNA during synthesis, including incorporation of two successive modified nucleotides. Production of a 998 bp amplicon by Tth DNA polymerase demonstrates that Fc1-dUTP is also a satisfactory substrate for PCR. Despite its structural similarity, Fc2-dUTP acts predominantly as a terminator with the polymerases employed here. UV melting analysis of a 37mer duplex containing five Fc1-dU residues reveals that the labelled nucleotide introduces only a modest helix destabilisation, with T(m) = 71 versus 75 degrees C for the corresponding natural construct. Modified DNA is detected at femtomole levels using a HPLC system with a coulometric detector. The availability of simple and effective enzymatic labelling strategies should promote the further development of electrochemical detection in nucleic acid analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC117300 | PMC |
http://dx.doi.org/10.1093/nar/gnf058 | DOI Listing |
J Vet Med Sci
January 2025
Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University.
Apoptosis, an important pathological event associated with kidney disease progression, is expected to be a therapeutic target in chronic kidney disease (CKD). However, its role in naturally occurring CKD in aged cats remains unclear. Therefore, here, we investigated kidney tissues from aged cats (≥10 years) with or without azotemic CKD to evaluate apoptotic events using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay.
View Article and Find Full Text PDFCytojournal
November 2024
Department of General Surgery, Jincheng General Hospital, Jincheng, China.
Objective: Pancreatic cancer is characterized by low survival rate and rapid deterioration. Methyltransferase-like 14 (METTL14), as N6-methyladenosine (m6A) methyltransferase, is closely related to tumor progression. The purpose of this study is to look into how METTL14 affects pancreatic cancer tumorigenesis, cell division, and apoptosis.
View Article and Find Full Text PDFASAIO J
December 2024
Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
Donation after circulatory death (DCD) livers face increased risks of critical complications when preserved with static cold storage (SCS). Although machine perfusion (MP) may mitigate these risks, its cost and logistical complexity limit widespread application. We developed the Dynamic Organ Storage System (DOSS), which delivers oxygenated perfusate at 10°C with minimal electrical power requirement and allows real-time effluent sampling in a portable cooler.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2024
Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China.
Background: LncRNA taurine-upregulated gene 1 () can regulate vascular endothelial cell injury, a critical mechanism in treating hemorrhagic shock and fluid resuscitation (HS/R). Therefore, this study explored the influence of in HS/R.
Methods: An rat model of ischemia-reperfusion (I/R) injury post-HS/R and an model of oxidative stress injury in rat cardiomyocyte cell line (H9C2) were constructed.
Int J Mol Sci
November 2024
Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!