R115777 (Zarnestra) is a farnesyl protein transferase inhibitor currently undergoing worldwide clinical trials. As acquired drug resistance may limit the efficacy of the drug, a model of acquired resistance has been established in vitro by continuous drug exposure of the human colon cancer cell line KM12. A stably resistant cell line possessing 13-fold resistance to R115777 was generated. The resistant cells showed cross-resistance to another, structurally different farnesyl transferase inhibitor-277, but not to GGTI-298. A lack of cross-resistance was observed to a variety of other agents, which included clinically used drugs, such as doxorubicin, etoposide, cisplatin, and paclitaxel, as well as signal transduction blockers, such as the mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor UO126, the phosphatidylinositol 3'-kinase inhibitor LY294002, and the epidermal growth factor receptor tyrosine kinase inhibitor PD153035. Resistance did not appear to be related to differences in drug efflux pumps, such as P-glycoprotein or in drug accumulation. Total levels of farnesyl transferase protein subunits were similar in the parent and resistant cells, but, notably, the enzyme activity was markedly reduced in the resistant cell line compared with the parent cells. This was not because of a mutation in the enzyme or a difference in activation of the alpha-subunit of farnesyl transferase by phosphorylation. Hence, resistance to R115777 was generated; the mechanism of resistance in this model may be associated with the enzyme target of the inhibitor. The results suggest that the development of clinical resistance may occur with farnesyl protein transferase inhibitors.
Download full-text PDF |
Source |
---|
Nat Commun
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
Nat Commun
January 2025
Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P R China.
Prenylation modifications of natural products play essential roles in chemical diversity and bioactivities, but imidazole modification prenyltransferases are not well investigated. Here, we discover a dimethylallyl tryptophan synthase family prenyltransferase, AuraA, that catalyzes the rare dimethylallylation on the imidazole moiety in the biosynthesis of aurantiamine. Biochemical assays validate that AuraA could accept both cyclo-(L-Val-L-His) and cyclo-(L-Val-DH-His) as substrates, while the prenylation modes are completely different, yielding C2-regular and C5-reverse products, respectively.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.
View Article and Find Full Text PDFMol Metab
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. Electronic address:
JBMR Plus
January 2025
Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!