Rape (Brassica napus L. var. Bienvenue) is a 16:3 plant which contains predominantly prokaryotic species of monogalactosyldiacylglycerol i.e. sn-1 C18, sn-2 C16 (C18/C16 MGDG). Rape plants were exposed to a restricted water supply for 12 days. Under drought conditions, considerable changes in lipid metabolism were observed. Drought stress provoked a decline in leaf polar lipids, which is mainly due to a decrease in MGDG content. Determination of molecular species in phosphatidylcholine (PC) and MGDG indicated that the prokaryotic molecular species of MGDG (C18/C16) decreased after drought stress while the eukaryotic molecular species (C18/C18) remained stable. Drought stress had different effects on two key enzymes of PC and MGDG synthesis. The in vitro activity of MGDG synthase (EC. 2.4.1.46) was reduced in drought stressed plants whereas cholinephosphotransferase (EC. 2.7.8.2) activity was not affected. Altogether these results suggest that the prokaryotic pathway leading to MGDG synthesis was strongly affected by drought stress while the eukaryotic pathway was not. It was also observed that the molecular species of leaf PC became more saturated in drought stressed plants. This could be due to a specific decrease in oleate desaturase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1399-3054.2002.1150207.x | DOI Listing |
Hortic Res
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193.
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.
Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFISME J
January 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, United States.
Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
January 2025
Department of Biotechnology, 502852 School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata 700126, India.
Drought stress remains a serious concern in L. var , cultivar Satabdi (IET4786) production, particularly during the earliest growth phases, ultimately affecting yield due to the recent trend of delayed rain arrival in West Bengal, India. This study aimed to develop a cost-effective strategy to improve the drought tolerance capacity of rice seedlings by priming the seeds with flavonoid-enriched extract (FEE) of French marigold () petals to withstand the initial drought milieu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!