Purpose: The aim of this research was to study the relevance of long-term follow-up of electroretinographic oscillatory potentials (OPs) in predicting the onset of minimal non-proliferative diabetic retinopathy in insulin-dependent diabetes patients.
Methods: A total of 80 insulin-dependent diabetics, with normal fundi and normal OPs at first examination, were followed prospectively for 10 years. Oscillatory potentials were measured and fundus examinations performed once or twice per year.
Results: During follow-up, 35% of patients developed diabetic retinopathy after a mean disease duration of 12 +/- 2 years. A decrease in OP amplitudes was seen in 46% of this group, but reductions were also seen in the 25% of patients whose fundi remained normal. Statistical analysis of best-fit survival curves shows a significant difference (p < 0.001) in the point of Kaplan-Meiers' curve maximal linearity (TmaxS).
Conclusions: It appears that eyes with reduced OP amplitude have a greater probability of developing diabetic retinopathy. Subnormal OP amplitudes are not proof of real concomitant visible vascular damage, but may reflect a predisposition to functional neurosensorial disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-0420.2002.800314.x | DOI Listing |
Langmuir
January 2025
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States.
We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:
Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure.
View Article and Find Full Text PDFInnovations (Phila)
December 2024
Department of Neurosciences and Rehabilitation, Cardiac Surgery Unit, University of Ferrara, Italy.
Objective: Both the en bloc island technique and the branched graft technique (BGT) present advantages but also limitations in aortic arch surgery. Here is the first presentation of an innovative prosthesis for aortic arch replacement, conceived to overcome the disadvantages of both techniques.
Methods: The novel ISLAND graft is a tubular Dacron or hybrid prosthesis with an additional extended Dacron graft ("bubble") on the superior aspect, for en bloc island graft anastomosis.
Psychophysiology
January 2025
Department of Psychology, University of Georgia, Athens, Georgia, USA.
Emotional experiences involve dynamic multisensory perception, yet most EEG research uses unimodal stimuli such as naturalistic scene photographs. Recent research suggests that realistic emotional videos reliably reduce the amplitude of a steady-state visual evoked potential (ssVEP) elicited by a flickering border. Here, we examine the extent to which this video-ssVEP measure compares with the well-established Late Positive Potential (LPP) that is reliably larger for emotional relative to neutral scenes.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!