Drifting pattern domains (DPDs), i.e., moving localized patches of traveling waves embedded in a stationary (Turing) pattern background and vice versa, are observed in simulations of a reaction-diffusion model with nonlocal coupling. Within this model, a region of bistability between Turing patterns and traveling waves arises from a codimension-2 Turing-wave bifurcation (TWB). DPDs are found within that region in a substantial distance from the TWB. We investigated the dynamics of single interfaces between Turing and wave patterns. It is found that DPDs exist due to a locking of the interface velocities, which is imposed by the absence of space-time defects near these interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.65.055101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!