The fungal disease Fusarium head blight occurs on wheat (Triticum spp.) and barley (Hordeum vulgare L.) and is one of the worldwide problems of agriculture. It can be caused by various Fusarium species. We are characterizing the proteinases of F. culmorum to investigate how they may help the fungus to attack the grain. A trypsin-like proteinase has been purified from a gluten-containing culture medium of F. culmorum. The enzyme was maximally active at about pH 9 and 45 degrees C, but was not stable under those conditions. It was stabilized by calcium ions and by the presence of other proteins. The proteinase was most stable at pH 6-7 at ambient temperatures, but was quickly inactivated at 50 degrees C. It was strongly inhibited by p-amidino phenylmethylsulfonyl fluoride (p-APMSF), and soybean trypsin and Bowman-Birk inhibitors, and it preferentially hydrolyzed the peptide bonds of the protein substrate beta-purothionin on the C-terminal side of Arg (mainly) and Lys residues. These characteristics show that it is a trypsin-like proteinase. In addition, its N-terminal amino acid sequence was 88% identical to that of the F. oxysporum trypsin-like enzyme. The proteinase hydrolyzed the D hordein and some of the C hordeins (the barley storage proteins). This enzyme, and a subtilisin-like proteinase that we recently purified from the same organism, possibly play roles in helping the fungus to colonize grains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf020027x | DOI Listing |
Int J Mol Sci
January 2025
Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.
Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China. Electronic address:
Serine proteases (SPs) are important proteases in the digestive system of lepidopteran insects. They play important roles in protein digestion, coagulation, signal transduction, hormone activation, inflammation and development. Blood-borne pyosis caused by Bombyx mori nuclear polyhedrosis virus (BmNPV) has caused serious harm to sericulture.
View Article and Find Full Text PDFMolecules
November 2024
Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
Genes (Basel)
November 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Int J Mol Sci
November 2024
Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!