In the present investigation, regional ATP, glucose, and lactate contents were examined in the cortical and subcortical structures after cold lesion in rats. Bioluminescence imaging of ATP, glucose, and lactate was performed in serial tissue sections at 4 h (n = 4), 12 h (n = 4) and 24 h (n = 4) after cold injury or sham surgery. Bioluminescence images were analyzed by computer-assisted densitometry, at the lesion site, in cortical areas, in the hippocampus, and in the thalamus. ATP and glucose content were significantly decreased at the lesion site as well as on the contralateral side after 4, 12, and 24 h postinjury Lactate content increased significantly in the hippocampal area on the ipsilateral side at 12 h. Cortical lactate was bilaterally unchanged. The cold lesion injury led to a characteristic ischemic profile in the hippocampus signaled by low ATP and glucose content paralleled by high lactate levels. The otherwise global depletion of glucose and ATP suggests that other factors besides cerebral blood flow may contribute to the impairment of energy metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/jmn:18:3:247 | DOI Listing |
Analyst
January 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.
View Article and Find Full Text PDFMol Biol Cell
January 2025
LPHI, Univ. Montpellier, CNRS, INSERM, France.
Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.
View Article and Find Full Text PDFBiomaterials
January 2025
144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. Electronic address:
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.
View Article and Find Full Text PDFInt J Cardiol Cardiovasc Risk Prev
March 2025
Beijing Chaoyang Hospital, Capital Medical University, Department of Endocrinology, Beijing, China.
Object: To explore the mechanism of diabetic cardiomyopathy that hyperglycemia may affect the cardiac function by inhibiting the expression of ATPase β subunit.
Method: Cardiac function, fibrosis levels, and the expression of the ATPase β subunit were observed in Akita mice-a diabetes mice model without lipid metabolism disorders--using morphological, molecular biology, and echocardiographic analyses compared to wild-type mice. The study revealed a connection between the decreased ATPase β subunit and the development of diabetic myocardial injury.
Microb Biotechnol
January 2025
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!