The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC117630 | PMC |
http://dx.doi.org/10.1091/mbc.02-02-0031 | DOI Listing |
Cancers (Basel)
August 2023
Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden.
Aberrant activation of anaplastic lymphoma kinase (ALK) by activating point mutation or amplification drives 5-12% of neuroblastoma (NB). Previous work has identified the involvement of the insulin-like growth factor 1 receptor (IGF1R) receptor tyrosine kinase (RTK) in a wide range of cancers. We show here that many NB cell lines exhibit IGF1R activity, and that IGF1R inhibition led to decreased cell proliferation to varying degrees in ALK-driven NB cells.
View Article and Find Full Text PDFJ Cell Biol
August 2022
Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL.
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases.
View Article and Find Full Text PDFJ Cell Commun Signal
March 2021
Molecular Biology and Genetics Department, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
Ovarian cancer is the most lethal gynecological malignancy and molecular mechanisms of its progression and metastasis are not completely understood. Some members of GAB (GRB2-associated binding) protein family have been reported to be involved in tumor cell proliferation and metastasis in various cancer types. In the present study, we analyzed the expression of GAB proteins (GAB1, GAB2 and GAB3) in ovarian cancer compared to normal ovarian tissue, in terms of tumor stage, tumor grade and histological type.
View Article and Find Full Text PDFGlia
November 2017
Department of Physiology, Peripheral Neuropathy Research Center (PNRC), College of Medicine, Dong-A University, Busan, South Korea.
The sequential reactive changes in Schwann cell phenotypes in transected peripheral nerves, including dedifferentiation, proliferation and migration, are essential for nerve repair. Even though the injury-induced migratory and proliferative behaviors of Schwann cells resemble epithelial and mesenchymal transition (EMT) in tumors, the molecular mechanisms underlying this phenotypic change of Schwann cells are still unclear. Here we show that the reactive Schwann cells exhibit migratory features dependent on the expression of a scaffolding oncoprotein Grb2-associated binder-2 (Gab2), which was transcriptionally induced by neuregulin 1-ErbB2 signaling following nerve injury.
View Article and Find Full Text PDFJ Biol Chem
August 2017
From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China. Electronic address:
M2-polarized macrophages, also known as alternatively activated macrophages, have long been associated with pulmonary fibrosis; however, the mechanism has not been fully defined. Gab1 and Gab2 proteins belong to the Gab family of adaptors and are integral components of the signal specificity in response to various extracellular stimuli. In this report, we found that levels of both Gab1 and Gab2 were elevated in M2-polarized macrophages isolated from bleomycin-induced fibrotic lungs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!