Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Under normoxic conditions, macrophages from C57BL mice produce low levels of vascular endothelial growth factor (VEGF). Hypoxia stimulates VEGF expression by approximately 500%; interferon-gamma (IFN-gamma) with endotoxin [lipopolysaccharide (LPS)] also stimulates VEGF expression by approximately 50 to 150% in an inducible nitric oxide synthase (iNOS)-dependent manner. Treatment of normoxic macrophages with 5'-N-ethyl-carboxamido-adenosine (NECA), a nonselective adenosine A(2) receptor agonist, or with 2-[p-(2-carboxyethyl)-phenylethyl amino]-5'-N-ethyl-carboxamido-adenosine (CGS21680), a specific adenosine A(2A) receptor agonist, modestly increases VEGF expression, whereas 2-chloro-N(6)-cyclopentyl adenosine (CCPA), an adenosine A(1) agonist, does not. Treatment with LPS (0 to 1000 ng/ml), or with IFN-gamma (0 to 300 U/ml), does not affect VEGF expression. In the presence of LPS (EC(50) < 10 ng/ml), but not of IFN-gamma, both NECA and CGS21680 synergistically up-regulate VEGF expression by as much as 10-fold. This VEGF is biologically active in vivo in the rat corneal bioassay of angiogenesis. Inhibitors of iNOS do not affect this synergistic induction of VEGF, and macrophages from iNOS-/- mice produce similar levels of VEGF as wild-type mice, indicating that NO does not play a role in this induction. Under hypoxic conditions, VEGF expression is slightly increased by adenosine receptor agonists but adenosine A(2) or A(1) receptor antagonists 3,7-dimethyl-1-propargyl xanthine (DMPX), ZM241385, and 8-cyclopentyl-1,3-dipropylxanthine (DCPCX) do not modulate VEGF expression. VEGF expression is also not reduced in hypoxic macrophages from A(3)-/- and A(2A)-/- mice. Thus, VEGF expression by hypoxic macrophages does not seem to depend on endogenously released or exogenous adenosine. VEGF expression is strongly up-regulated by LPS/NECA in macrophages from A(3)-/- but not A(2A)-/- mice, confirming the role of adenosine A(2A) receptors in this pathway. LPS with NECA strongly up-regulates VEGF expression by macrophages from C(3)H/HeN mice (with intact Tlr4 receptors), but not by macrophages from C(3)H/HeJ mice (with mutated, functionally inactive Tlr4 receptors), implicating signaling through the Tlr4 pathway in this synergistic up-regulation. Finally, Western blot analysis of adenosine A(2A) receptor expression indicated that the synergistic interaction of LPS with A(2A) receptor agonists does not involve up-regulation of A(2A) receptors by LPS. These results indicate that in murine macrophages there is a novel pathway regulating VEGF production, that involves the synergistic interaction of adenosine A(2A) receptor agonists through A(2A) receptors with LPS through the Tlr4 pathway, resulting in the strong up-regulation of VEGF expression by macrophages in a hypoxia- and NO-independent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850844 | PMC |
http://dx.doi.org/10.1016/S0002-9440(10)61170-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!