Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells.

Free Radic Biol Med

Centre for Prevention and Treatment of Urinary Stones, Institute of Urology and Nephrology, University College London, UK.

Published: June 2002

Crystals of calcium oxalate monohydrate (COM) in the renal tubule form the basis of most kidney stones. Tubular dysfunction resulting from COM-cell interactions occurs by mechanism(s) that are incompletely understood. We examined the production of reactive oxygen intermediates (ROI) by proximal (LLC-PK1) and distal (MDCK) tubular epithelial cells after treatment with COM (25-250 microg/ml) to determine whether ROI, specifically superoxide (O(2)(*-)), production was activated, and whether it was sufficient to induce oxidative stress. Employing inhibitors of cytosolic and mitochondrial systems, the source of ROI production was investigated. In addition, intracellular glutathione (total and oxidized), energy status (ATP), and NADH were measured. COM treatment for 1-24 h increased O(2)(*-) production 3-6-fold as measured by both lucigenin chemiluminescence in permeabilized cells and dihydrorhodamine fluorescence in intact cells. Using selective inhibitors we found no evidence of cytosolic production. The use of mitochondrial probes, substrates, and inhibitors indicated that increased O(2)(*-) production originated from mitochondria. Treatment with COM decreased glutathione (total and redox state), indicating a sustained oxidative insult. An increase in NADH in COM-treated cells suggested this cofactor could be responsible for elevating O(2)(*-) generation. In conclusion, COM increased mitochondrial O(2)(*-) production by epithelial cells, with a subsequent depletion of antioxidant status. These changes may contribute to the reported cellular transformations during the development of renal calculi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(02)00846-8DOI Listing

Publication Analysis

Top Keywords

o2*- production
16
epithelial cells
12
production
8
oxidative stress
8
glutathione total
8
increased o2*-
8
cells
6
o2*-
5
mitochondrial
4
mitochondrial superoxide
4

Similar Publications

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Molecular Uranium Dioxide-Mediated CO Photoreduction.

J Am Chem Soc

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).

View Article and Find Full Text PDF

Controlins I-X, Resin Glycosides from the Seeds of and Their Biological Activities.

J Nat Prod

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, People's Republic of China.

Ten new resin glycosides, controlins I-X (-), were isolated from the seeds of . Their structures were established by spectroscopic analysis as well as by chemical means. Compounds were identified as glycosidic acid methyl esters, considered as artifacts generated via transesterification with MeOH from natural resin glycosides.

View Article and Find Full Text PDF

A mitochondria-targeted nanozyme with enhanced antioxidant activity to prevent acute liver injury by remodeling mitochondria respiratory chain.

Biomaterials

January 2025

Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China. Electronic address:

Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO) is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!