A number of compounds used for cancer chemotherapy exert their effects by inhibiting DNA replication. New inhibitors of DNA polymerases, therefore, could be potential candidates for new anti-cancer drugs. This study tested the effects of two phenalenone-skeleton-based compounds, which were isolated from a marine-derived fungus Penicillium sp., sculezonone-B (SCUL-B) and sculezonone-A (SCUL-A), upon DNA polymerase activity. Both compounds inhibited bovine DNA polymerases alpha and gamma, moderately affected the activity of DNA polymerase epsilon, and had almost no effect on HIV-reverse transcriptase and an E. coli DNA polymerase I Klenow fragment. Most notably, whereas SCUL-A inhibited pol beta (IC(50) = 17 microM), SCUL-B has only a weak influence upon this polymerase (IC(50) = 90 microM). Kinetic studies showed that inhibition of both DNA polymerases alpha and beta by either SCUL-A or SCUL-B was competitive with respect to dTTP substrate and noncompetitive with the template-primer. Whereas pol alpha inhibition by SCUL-B is competitive with respect to dATP, the inhibition by SCUL-A was found to be a mixed type with dATP substrate. The K(i) values of SCUL-B were calculated to be 1.8 and 6.8 microM for DNA polymerases alpha and gamma, respectively. The K(i) of DNA polymerase beta for SCUL-A was 12 microM and that for DNA polymerase alpha, 16 microM. Therefore, deletion of the OH-group at C12 enhanced inhibition of DNA polymerase beta. Since computational analyses of these two inhibitors revealed a remarkable difference in the distribution of negative electrostatic charge on the surface of molecules, we infer that different electrostatic charges might elicit different inhibition spectra from these two compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi020115aDOI Listing

Publication Analysis

Top Keywords

dna polymerase
24
dna polymerases
20
dna
12
polymerases alpha
12
marine-derived fungus
8
inhibition spectra
8
alpha gamma
8
ic50 microm
8
inhibition dna
8
beta scul-a
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!