The theory of the computer calculation of the stability of ion motion in periodic quadrupole fields is considered. A matrix approach for the numerical solution of the Hill equation and examples of calculations of stability diagrams are described. The advantage of this method is that it can be used for any periodic waveform. The stability diagrams with periodic rectangular waveform voltages are calculated with this approach. Calculations of the conventional stability diagram of the 3-D ion trap and the first six regions of stability of a mass filter with this method are presented. The stability of the ion motion for the case of a trapping voltage with two or more frequencies is also discussed. It is shown that quadrupole excitation with the rational angular frequency omega = Nomega/P (where N, P are integers and omega is the angular frequency of the trapping field) leads to splitting of the stability diagram along iso-beta lines. Each stable region of the unperturbed diagram splits into P stable bands. The widths of the unstable resonance lines depend on the amplitude of the auxiliary voltage and the frequency. With a low auxiliary frequency splitting of the stability diagram is greater near the boundaries of the unperturbed diagram. It is also shown that amplitude modulation of the trapping RF voltage by an auxiliary signal is equivalent to quadrupole excitation with three frequencies. The effect of modulation by a rational frequency is similar to the case of quadrupole excitation, although splitting of the stability diagram differs to some extent. The methods and results of these calculations will be useful for studies of higher stability regions, resonant excitation, and non-sinusoidal trapping voltages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1044-0305(02)00365-3 | DOI Listing |
Crit Rev Ther Drug Carrier Syst
January 2025
Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India.
Microemulsions (MEs) are homogeneous, isotropic, transparent, and thermodynamically stable mixtures of water, oil, and surfactants. Their unique properties have garnered increasing interest across various fields, including chemistry, pharmacology, biotechnology, and biology. This review aims to provide a comprehensive overview of ME compositions, their macroscopic appearances, and the roles of their essential components - oil, water, surfactant, and co-surfactant - in controlling the nature and stability of MEs.
View Article and Find Full Text PDFSmall
January 2025
SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India.
Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Quantitative Biology Group, University of Belgrade - Faculty of Biology, Studentski trg 16, Belgrade11000, Serbia.
Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).
View Article and Find Full Text PDFSci Rep
January 2025
Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
To achieve rapid and stable detumbling of a space noncooperative satellite, an adaptive variable admittance control method for the manipulator is proposed and verified through simulation study and the ground experiment. The control block diagram of the proposed method is presented, and the adaptive variable admittance compliant detumbling control model is established. The proposed controller includes the fixed admittance controller in manipulator task space, the adaptive pose compensator for the grasping point on docking ring, and the damping adaptive regulator based on manipulator joint angular velocity, and the stability is proven by the Lyapunov method.
View Article and Find Full Text PDFChaos
January 2025
Department of Mathematics, Indian Institute of Technology Patna, Patna 801103, India.
Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!