Ca(2+)-triggered dense-core vesicle exocytosis in PC12 cells does not require vesicular synaptotagmins 1 and 2, but may use plasma membrane synaptotagmins 3 and 7 as Ca(2+) sensors. In support of this hypothesis, C(2) domains from the plasma membrane but not vesicular synaptotagmins inhibit PC12 cell exocytosis. Ca(2+) induces binding of both plasma membrane and vesicular synaptotagmins to phospholipids and SNAREs (soluble N-ethylmaleimide-sensitive attachment protein receptors), although with distinct apparent Ca(2+) affinities. Here we used gain-of-function C(2)-domain mutants of synaptotagmin 1 and loss-of-function C(2)-domain mutants of synaptotagmin 7 to examine how synaptotagmins function in dense-core vesicle exocytosis. Our data indicate that phospholipid- but not SNARE-binding by plasma membrane synaptotagmins is the primary determinant of Ca(2+)-triggered dense-core vesicle exocytosis. These results support a general lipid-based mechanism of action of synaptotagmins in exocytosis, with the specificity of various synaptotagmins for different types of fusion governed by their differential localizations and Ca(2+) affinities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn869 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!