Background & Aims: Diabetes mellitus is associated with changes in bile formation. The aim of our study was to investigate the molecular basis for these changes in rats with experimentally induced diabetes.

Methods: Expression of bile canalicular transporters was studied by reverse-transcription polymerase chain reaction, immunoblotting, and immunohistochemistry in control, streptozotocin-diabetic, and insulin-treated diabetic rats. Bile formation was studied under basal conditions and during stepwise increasing intravenous infusion of taurocholate to determine bile salt secretory rate maximum (SRm).

Results: In diabetic rats, hepatic gene and protein expression of the multidrug resistance P-glycoprotein type 2 (Mdr2) were increased by 105% and 530%, respectively, associated with increased biliary phospholipid output (+520%) and phospholipid/bile salt ratio (+77%). Protein levels of the canalicular bile salt export pump (Bsep) were unchanged in diabetic rats, but basal biliary bile salt output and the SRm of taurocholate were increased by 260% and 130%, respectively, compared with controls. Alterations in transporter expression and bile formation were partly reversed by insulin administration. The bile salt SRm was strongly correlated with biliary phospholipid concentration (P < 0.001, R = 0.82).

Conclusions: Induction of Mdr2 expression and biliary phospholipid secretion, rather than Bsep expression, appears to be responsible for the enhanced capacity of biliary bile salt secretion in experimentally induced diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1053/gast.2002.33582DOI Listing

Publication Analysis

Top Keywords

bile salt
20
bile formation
12
diabetic rats
12
biliary phospholipid
12
bile
9
experimentally induced
8
expression bile
8
biliary bile
8
expression
6
salt
6

Similar Publications

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach.

Arch Pharm (Weinheim)

January 2025

Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.

The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5.

View Article and Find Full Text PDF

This study investigated whether the galactooligosaccharide (GOS)-metabolism-related genes (GOS-cluster) in contribute to alleviating glucose and lipid metabolic disorders in type 2 diabetic mice. Genomic analysis of 69 strains based on the GOS-cluster, combined with in vitro fermentation experiments, revealed that high-GOS-cluster strains (≥24 MFS, ≥39 GOS-cluster) demonstrated superior GOS utilization and bile salt tolerance. In vivo the high-GOS-cluster strains resulted in a significant reduction of blood glucose levels by 18.

View Article and Find Full Text PDF

Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs.

Expert Opin Drug Metab Toxicol

January 2025

Institut de R&D Servier, Paris-Saclay, F-91190 Gif-sur-Yvette, France.

Introduction: Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays.

Area Covered: This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results.

View Article and Find Full Text PDF

Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response.

Int J Mol Sci

January 2025

Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!