Ceruloplasmin metabolism and function.

Annu Rev Nutr

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Published: November 2002

Ceruloplasmin is a serum ferroxidase that contains greater than 95% of the copper found in plasma. This protein is a member of the multicopper oxidase family, an evolutionarily conserved group of proteins that utilize copper to couple substrate oxidation with the four-electron reduction of oxygen to water. Despite the need for copper in ceruloplasmin function, this protein plays no essential role in the transport or metabolism of this metal. Aceruloplasminemia is a neurodegenerative disease resulting from inherited loss-of-function mutations in the ceruloplasmin gene. Characterization of this disorder revealed a critical physiological role for ceruloplasmin in determining the rate of iron efflux from cells with mobilizable iron stores and has provided new insights into human iron metabolism and nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.nutr.22.012502.114457DOI Listing

Publication Analysis

Top Keywords

ceruloplasmin
5
ceruloplasmin metabolism
4
metabolism function
4
function ceruloplasmin
4
ceruloplasmin serum
4
serum ferroxidase
4
ferroxidase greater
4
greater 95%
4
95% copper
4
copper plasma
4

Similar Publications

Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows.

Animals (Basel)

January 2025

Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

(Objectives) The objectives of this study were to evaluate the effect of half-replacement of the supplementary sulfate sources of Cu, Mn, and Zn with methionine-hydroxy-analog-chelated (MHAC) mineral or amino-acid-complexed (AAC) mineral forms in diets on the mineral status, blood immune biomarkers, and lameness of lactating cows. (Methods) Sixty multiparous Holstein cows (158 ± 26 days in milk; body weight: 665 ± 52 kg; milk yield: 32 ± 7 kg/day) were randomly assigned into one of three dietary treatments ( = 20 per group): (1) MHAC: 50% replacement of sulfate minerals with MHAC forms. (2) AAC: 50% replacement of sulfate minerals with AAC forms.

View Article and Find Full Text PDF

The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.

View Article and Find Full Text PDF

A 16-year-old boy was diagnosed from multiple sclerosis (MS) after suffering from paresthesia in upper limbs and VI cranial nerve paresis. Corticosteroids and fingolimod were started. After 13 months a worsening of liver biochemical tests (LBT) was noticed: ALP 787 U/L, GGT 737 U/L, AST 195, ALT 321, Bi 0.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus (SLE) complicated by thrombotic microangiopathy (TMA) and non-cirrhotic portal hypertension (NCPH) is rare. We present a case of a female patient with SLE who developed TMA and NCPH and responded positively to rituximab and plasma exchange treatment.

Case Description: A 53-year-old woman was admitted with 6 h of confusion.

View Article and Find Full Text PDF

An 11-year-old girl with quiescent ulcerative colitis had sustained elevation of liver enzymes. Although she had no clinical symptoms suggestive of Wilson's disease, such as Kayser-Fleischer rings, laboratory data showed decreased serum copper and ceruloplasmin levels and increased urinary copper excretion. Genetic testing showed pathogenic variants in allele 1: c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!