Suppression of autoimmune diabetes by viral IL-10 gene transfer.

J Immunol

Division of Endocrinology and Metabolism, and Department of Internal Medicine, University of Virginia, Charlottesville, VA 22908, USA.

Published: June 2002

Th1 cell activation and cytokine production shift the balance between Th1 and Th2, favoring the up-regulation of proinflammatory activity that leads to destruction of insulin-producing pancreatic beta cells in type 1 diabetes. Th2-type cytokines, such as IL-10, have immune regulatory function. Administration of IL-10, or IL-10 gene transfer, prevents autoimmune diabetes in nonobese diabetic (NOD) mice. However, constant administration of purified rIL-10 is not practical for long-term therapy to prevent diabetes. In this study, we transferred the BCRF-1 gene, an open reading frame in the Epstein-Barr viral genome with remarkable homology to mouse IL-10 (viral IL-10 or vIL-10), by an adeno-associated viral (AAV) vector to NOD mice to attain sustained vIL-10 gene expression. Like endogenous mouse IL-10, vIL-10 has potent immunoregulatory and immunosuppressive functions, but can be specifically distinguished from endogenous mouse IL-10 for monitoring of the transgene expression. A single systemic administration of AAV vIL-10 significantly reduced insulitis and prevented diabetes development in NOD mice. This protective effect correlated with sustained transgene expression and protein production. Moreover, splenocytes from the treated mice blocked diabetes transfer to NOD recipients, suggesting that vIL-10 induces an active suppression of autoimmunity. This study provides evidence to support the possibility of using vIL-10 gene therapy to prevent type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.168.12.6479DOI Listing

Publication Analysis

Top Keywords

nod mice
12
mouse il-10
12
autoimmune diabetes
8
il-10
8
viral il-10
8
il-10 gene
8
gene transfer
8
type diabetes
8
therapy prevent
8
il-10 vil-10
8

Similar Publications

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.

Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).

View Article and Find Full Text PDF

Introduction: Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood.

View Article and Find Full Text PDF

Aims/introduction: Diabetic foot ulcer (DFU) is a prevalent complication of diabetes characterized by heightened inflammation and impaired wound-healing processes. Interleukin-37 (IL-37) is a natural suppressor of innate inflammation. Here, we aim to investigate the potential of IL-37 in enhancing the healing process of diabetic wounds.

View Article and Find Full Text PDF

ALKBH5 promotes cardiac fibroblasts pyroptosis after myocardial infarction through Notch1/NLRP3 pathway.

Cell Signal

December 2024

Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:

Through bioinformatics screening, we previously found that AlkB homolog 5 (ALKBH5) expression, an mA demethylase, was higher in patients with heart failure than in the normal population. This study aimed to investigate the molecular mechanisms by which ALKBH5 regulates heart failure. We established a myocardial infarction (MI)-induced heart failure model in rats in vivo and an in vitro hypoxia model using rat primary cardiac fibroblasts (RCFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!