Phosphatidylinositol 4,5-bisphosphate (PIP2) affects profoundly several cardiac ion channels and transporters, and studies of PIP2-sensitive currents in excised patches suggest that PIP2 can be synthesized and broken down within 30 s. To test when, and if, total phosphatidylinositol 4-phosphate (PIP) and PIP(2) levels actually change in intact heart, we used a new, nonradioactive HPLC method to quantify anionic phospholipids. Total PIP and PIP2 levels (10-30 micromol/kg wet weight) do not change, or even increase, with activation of Galpha(q)/phospholipase C (PLC)-dependent pathways by carbachol (50 microM), phenylephrine (50 microM), and endothelin-1 (0.3 microM). Adenosine (0.2 mM) and phorbol 12-myristate 13-acetate (1microM) both cause 30% reduction of PIP2 in ventricles, suggesting that diacylglycerol (DAG)-dependent mechanisms negatively regulate cardiac PIP2. PIP2, but not PIP, increases reversibly by 30% during electrical stimulation (2 Hz for 5 min) in guinea pig left atria; the increase is blocked by nickel (2 mM). Both PIP and PIP2 increase within 3 min in hypertonic solutions, roughly in proportion to osmolarity, and similar effects occur in multiple cell lines. Inhibitors of several volume-sensitive signaling mechanisms do not affect these responses, suggesting that PIP2 metabolism might be sensitive to membrane tension, per se.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00486.2001 | DOI Listing |
Cytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.
Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.
Neuron
January 2025
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:
Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.
View Article and Find Full Text PDFmBio
December 2024
Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP) signaling in the actin-dependent pathogenicity of . This study further demonstrated that iron transiently regulated phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor Arf220, facilitating co-trafficking to the plasma membrane, crucial for PIP production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!