We have previously used trisubstituted cyclopropanes as peptide replacements to induce conformational constraints in known pseudopeptide inhibitors of a number of important enzymes. Cyclopropane-derived peptide mimics are novel in that they are among the few replacements that locally orient the peptide backbone and the amino acid side chain in a predefined manner. Although these dipeptide isosteres have been employed to orient amino acid side chains mimicking the gauche(-) conformation of chi(1)-space, their ability to project the side chains into an anti orientation has not been evaluated. As a first step toward this goal, the conformationally constrained pseudopeptides 8 and 10 and their corresponding flexible analogues 9 and 11 were prepared and tested as inhibitors of matrix metalloproteinases (MMPs). These compounds are analogues of 4 and 5, which were known to be potent MMP inhibitors. The anti orientations of the isopropyl side chain in 8 and the aromatic ring in 10 relative to the peptide backbone substituents on the cyclopropane were predicted to correspond to the known orientations of the P1' and P2' side chains of 5 when bound to MMPs. Hence, 8 and 10 were designed explicitly to probe topological features of the S1' or the S2' binding pockets of the MMPs. They were also designed to explore the importance of the P1'-P2' amide group, which is known to form highly conserved hydrogen bonds in several MMP-inhibitor complexes, and the viability of introducing a retro amide linkage between P2' and P3'. Pseudopeptides 8 and 9 were found to be weak competitive inhibitors of a series of MMPs. Any entropically favorable conformational constraints that were induced by the cyclopropane in 8 were thus overwhelmed by the loss of the hydrogen bonding capability associated with the P1'-P2' amide group. On the other hand, compounds 10 and 11, which contain a P2'-P3' retro amide group, were modest competitive inhibitors of a series of MMPs. The results obtained for 10 and 11 suggest that there may be a loss of hydrogen bonding capability associated with introducing the P2'-P3' retro amide group. However, because the conformationally constrained pseudopeptide 10 was significantly more potent than its flexible analogue 11, trisubstituted cyclopropanes related to 3 may serve as useful rigid dipeptide replacements in some biologically active pseudopeptides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0110698DOI Listing

Publication Analysis

Top Keywords

amide group
16
side chains
12
retro amide
12
p1' p2'
8
trisubstituted cyclopropanes
8
conformational constraints
8
peptide backbone
8
amino acid
8
acid side
8
side chain
8

Similar Publications

Adenomyosis is characterized by abnormal uterine bleeding, dysmenorrhea and subfertility. Increased expression of angiogenesis markers in adenomyosis presents a treatment opportunity and was studied in an adenomyosis mouse model. Mice were administered tamoxifen (1 mg/kg) on neonatal days 2-5.

View Article and Find Full Text PDF

Novel Co-Polyamides Containing Pendant Phenyl/Pyridinyl Groups with Potential Application in Water Desalination Processes.

Polymers (Basel)

January 2025

Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile.

This study explores the development and evaluation of a novel series of aromatic co-polyamides featuring diverse pendant groups, including phenyl and pyridinyl derivatives, designed for water desalination membrane applications. These co-polyamides, synthesized with a combination of hexafluoroisopropyl, oxyether, phenyl, and amide groups, exhibited excellent solubility in polar aprotic solvents, thermal stability exceeding 350 °C, and the ability to form robust, flexible films. Membranes prepared via phase inversion demonstrated variable water permeability and NaCl rejection rates, significantly influenced by the pendant group chemistry.

View Article and Find Full Text PDF

A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction and reduction of the acetyl group using borohydride, which resulted into the corresponding amino-alcohols. The naphthalene-based amino-alcohols underwent double dehydrations and double intramolecular cyclization with oxo-acids leading to one-pot formation of a C-N bond, a C-O bond and an amide bond in tandem, to generate two additional rings completing the steroidal framework.

View Article and Find Full Text PDF

Ipomoeassin F (Ipom-F) is a plant-derived macrocyclic resin glycoside that potently inhibits cancer cell growth through blockage of Sec61-mediated protein translocation at the endoplasmic reticulum. Recently, detailed structural information on how Ipom-F binds to Sec61α was obtained using Cryo-EM, which discovered that polar interactions between asparagine-300 (N300) in Sec61α and four oxygens in Ipom-F are crucial. One of the four oxygens is from the carbonyl group at C-4 of the fatty acid chain.

View Article and Find Full Text PDF

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!