Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase.

Biochem Biophys Res Commun

Department of Diagnostic and Experimental Medicine, Eli Lilly and Company, Indianapolis, IN 46285, USA.

Published: April 2002

We have previously shown that diabetogenic antibiotic streptozotocin (STZ), an analog of N-acetylglucosamine (GlcNAc), inhibits the enzyme O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase (O-GlcNAcase) which is responsible for the removal of O-GlcNAc from proteins. Alloxan, another beta-cell toxin is a uracil analog. Since the O-GlcNAc transferase (OGT) uses UDP-GlcNAc as a substrate, we investigated whether alloxan might interfere with the process of protein O-glycosylation by blocking OGT, a very abundant enzyme in beta-cells. In isolated pancreatic islets, alloxan almost completely blocked both glucosamine-induced and STZ-induced protein O-GlcNAcylation, suggesting that alloxan indeed was inhibiting (OGT). In order to show definitively that alloxan was inhibiting OGT activity, recombinant OGT was incubated with 0-10 mM alloxan, and OGT activity was measured directly by quantitating UDP-[(3)H]-GlcNAc incorporation into the recombinant protein substrate, nucleoporin p62. Under these conditions, OGT activity was completely inhibited by 1 mM alloxan with half-maximal inhibition achieved at a concentration of 0.1 mM alloxan. Together, these data demonstrate that alloxan is an inhibitor of OGT, and as such, is the first OGT inhibitor described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0006-291X(02)00200-0DOI Listing

Publication Analysis

Top Keywords

ogt activity
12
alloxan
10
ogt
9
alloxan inhibitor
8
alloxan inhibiting
8
inhibiting ogt
8
inhibitor enzyme
4
enzyme o-linked
4
o-linked n-acetylglucosamine
4
n-acetylglucosamine transferase
4

Similar Publications

OGT-mediated O-GlcNAcylation regulates macrophage polarization in heart failure via targeting IRF1.

BMC Cardiovasc Disord

December 2024

Department of General Medicine, The Affiliated Hospital of Inner Mongolia Medical University, No.1, Tongdao North Road, Huimin District, Hohhot, Inner Mongolia, 010050, China.

Background: Heart failure (HF) is a syndrome with complex etiology and high mortality in the world. Macrophage-related inflammation is involved in HF development. O-GlcNAcylation is a post-translational modification that affects pathological processes.

View Article and Find Full Text PDF

O-GlcNAc transferase promotes vascular smooth muscle calcification through modulating Wnt/β-catenin signaling.

FASEB J

December 2024

Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.

Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear.

View Article and Find Full Text PDF

O-GlcNAcylation stabilized WTAP promotes GBM malignant progression in an N6-methyladenosine-dependent manner.

Neuro Oncol

December 2024

Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.

Background: Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive.

View Article and Find Full Text PDF

Dynamic O-GlcNAcylation coordinates etoposide-triggered tumor cell pyroptosis by regulating p53 stability.

J Biol Chem

December 2024

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:

O-GlcNAcylation, a modification of nucleocytoplasmic proteins in mammals, plays a critical role in various cellular processes. However, the interplay and their underlying mechanisms in chemotherapy-induced tumor regression between O-GlcNAcylation and pyroptosis, a form of programmed cell death associated with innate immunity, remains unclear. Here, we observed that during the etoposide-induced pyroptosis of SH-SY5Y and A549 cells, overall O-GlcNAcylation levels are substantially reduced.

View Article and Find Full Text PDF

O-GlcNAcylation of progranulin promotes hepatocellular carcinoma proliferation.

Biochem Biophys Res Commun

January 2025

Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523000, China. Electronic address:

Progranulin (PGRN) is overexpressed and implicated in hepatocellular carcinoma (HCC) development; however, its post-translational modifications and regulatory mechanisms in HCC remain largely unexplored. Here, the expression levels of PGRN, OGT, and O-GlcNAcylation were found to be elevated in both HCC samples and cell lines. LC-MS/MS analysis and immunoprecipitation revealed that PGRN underwent O-linked N-acetylglucosamine (O-GlcNAc) modification at threonine 272 (Thr272).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!