Role of the second immunoglobulin-like loop of nectin in cell-cell adhesion.

Biochem Biophys Res Commun

Department of Molecular Biology and Biochemistry, Faculty of Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.

Published: April 2002

Nectin is a Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecule that forms cell-cell adherens junctions cooperatively with E-cadherin in a variety of cells. Nectin has one transmembrane segment and three Ig-like loops in the extracellular region. The first Ig-like loop is essential for the trans-dimer formation of nectin of two neighboring cells, causing cell-cell adhesion. We show here that the second Ig-like loop is essential for the cis-dimer formation of nectin on the same cell, and that the cis-dimer formation is essential for the trans-dimer formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0006-291X(02)00183-3DOI Listing

Publication Analysis

Top Keywords

cell-cell adhesion
12
ig-like loop
8
loop essential
8
essential trans-dimer
8
trans-dimer formation
8
formation nectin
8
cis-dimer formation
8
nectin
5
role second
4
second immunoglobulin-like
4

Similar Publications

Click hydrogels to assess stiffness-induced activation of pancreatic cancer-associated fibroblasts and its impact on cancer cell spreading.

Chembiochem

January 2025

Purdue University College of Engineering, Weldon School of Biomedical Engineering, 723 W. Michigan St., SL 220K, IN 46202, Indianapolis, UNITED STATES OF AMERICA.

Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation.

View Article and Find Full Text PDF

Steroid sulfatase suppresses keratinization by inducing proteasomal degradation of E-cadherin via Hakai regulation.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:

X-linked ichthyosis (XLI) is a genetic disorder characterized by a steroid sulfatase (STS) deficiency inducing excessive cholesterol sulfate accumulation and keratinization. Our study utilizes STS knockout mice to reproduce the hyperkeratinization typical of XLI, providing a valuable model for investigating the underlying mechanisms. From the experiment of STS-deficient keratinocytes using the CRISPR/Cas9 system, we observed upregulation of E-cadherin, which is associated with keratinocyte differentiation and stratification.

View Article and Find Full Text PDF

The tight junction (TJ), a type of cell-cell junction, regulates the permeability of solutes across epithelial and endothelial cellular sheets and is believed to maintain cell polarity. However, recent studies have provided conflicting views on the roles of TJs in epithelial polarity. Membrane proteins, including occludin, claudin, and the junction adhesion molecule, have been identified as TJ components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!