Tobacco plants have been developed which constitutively express high levels of the biotin-binding proteins, avidin and streptavidin. These plants were phenotypically normal and produced fertile pollen and seeds. The transgene was expressed and its product located in the vacuoles of most cell types in the plants. Targeting was achieved by use of N-terminal vacuolar targeting sequences derived from potato proteinase inhibitors which are known to target constitutively to vacuoles in potato tubers and, under wound-induction, in tomato leaves. Avidin was located in protein body-like structures within the vacuole and transgene protein levels remained relatively constant throughout the lifetime of the leaf. We describe two chimeric constructs with similar levels of expression. One comprised a potato proteinase inhibitor I signal peptide cDNA sequence attached to an avidin cDNA and the second a potato proteinase inhibitor II signal peptide genomic sequence (including an intron) attached to a core streptavidin synthetic sequence. We were unable to regenerate plants when transformation used constructs lacking the targeting sequences. The highest levels observed (up to 1.5% of total leaf protein) confirm the vacuole as the organelle of choice for stable storage of plant-toxic transgene products. The efficient targeting of these proteins did not result in any measured changes in plant biotin metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015237610263DOI Listing

Publication Analysis

Top Keywords

targeting sequences
12
potato proteinase
12
biotin-binding proteins
8
proteins avidin
8
avidin streptavidin
8
vacuolar targeting
8
proteinase inhibitor
8
inhibitor signal
8
signal peptide
8
targeting
5

Similar Publications

Glioblastoma is the deadliest primary brain tumor, largely due to inevitable recurrence of the disease after treatment. While most recurrences are local, patients rarely present with a new discontiguous focus of glioblastoma. Little is currently known about the genetic profile of discontiguous recurrences.

View Article and Find Full Text PDF

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.

Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.

View Article and Find Full Text PDF

Optimal chemokine receptors for enhancing immune cell trafficking in adoptive cell therapy.

Immunol Res

January 2025

Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro, 43-Gil, Songpa-Gu, Seoul, 05505, Korea.

Recently, a strategy involving the engineering of chemokine receptors on immune cells was developed to optimize adoptive cell therapy (ACT) for solid tumors. Given the variability in chemokine secretion among different tumor types, identifying and modulating the appropriate chemokine receptors is crucial. In this study, we utilized extensive RNA sequencing data from both tumor tissues from The Cancer Genome Atlas and normal tissues from Genotype-Tissue Expression to investigate the expression profiles of chemokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!