Pigs are currently considered the most likely source of organs for human xenotransplantation because of anatomical and physiological similarities to humans, and the relative ease with which they can be bred in large numbers. A severe form of rejection known as hyperacute rejection has been the major barrier to the use of xenografts. Generating transgenic pigs for organ transplantation is likely to involve precise genetic manipulation to ablate the alpha(1,3) galactosyltransferase (galT) gene. In contrast to the mouse, homologous recombination in livestock species to ablate genes is hampered by the inability to isolate functional embryonic stem cells. However, nuclear transfer using genetically targeted cultured somatic cells provides an alternative means to producing pigs deficient for galT. In this study we successfully produced galT+/- somatic porcine fetal fibroblasts using two approaches; positive negative selection (PNS) using an isogenic targeting construct, and with a promoterless vector using non-isogenic DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015262108526DOI Listing

Publication Analysis

Top Keywords

alpha13 galactosyltransferase
8
porcine fetal
8
fetal fibroblasts
8
nuclear transfer
8
efficient generation
4
generation alpha13
4
galactosyltransferase knockout
4
knockout porcine
4
fibroblasts nuclear
4
transfer pigs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!