Two aerobic, pink-pigmented, facultatively methylotrophic bacteria, strains F20T and RXM(T), are described taxonomically. On the basis of their phenotypic and genotypic properties, the isolates are proposed as novel species of the genus Methylobacterium, Methylobacterium suomiense sp. nov. (type strain F20T = VKM B-2238T = NCIMB 13778T) and Methylobacterium lusitanum sp. nov. (type strain RXMT = VKM B-2239T = NCIMB 13779T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00207713-52-3-773 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
Three aerobic, pink-pigmented, Gram-negative, motile and rod-shaped bacterial strains, designated SD21, SI9 and SB2, were isolated from the phyllosphere of healthy litchis collected from three main producing sites of Guangdong Province, PR China. The 16S rRNA gene analysis showed that strains SD21 and SI9 belonged to the genus (.) with the highest similarity to DSM 19563 (98.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2018
2School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia.
The genus Methylobacterium, when first proposed by Patt et al. in 1976, was a monospecific genus created to accommodate a single pink pigmented facultatively methylotrophic bacterium. The genus now has over 50 validly published species, however, the percentage 16S rRNA sequence divergence within Methylobacterium questions whether or not they can still be accommodated within one genus.
View Article and Find Full Text PDFJ Appl Microbiol
February 2014
Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Korea.
Aim: To develop co-aggregated bacterial inoculant comprising of Methylobacterium oryzae CBMB20/Methylobacterium suomiense CBMB120 strains with Azospirillum brasilense (CW903) strain and testing their efficiency as inoculants for plant growth promotion (PGP).
Methods And Results: Biofilm formation and co-aggregation efficiency was studied between A. brasilense CW903 and methylobacterial strains M.
Arch Microbiol
March 2013
Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Republic of Korea.
The bacterial cell surface plays a major role in the bacterial aggregation that in turn plays a positive role in affecting the bacterial dispersion and survival in soil and their ability to adhere to plant surfaces. Plant growth-promoting Methylobacterium strains, Methylobacterium goesingense CBMB5, Methylobacterium sp. CBMB12, Methylobacterium oryzae CBMB20, Methylobacterium fujisawaense CBMB37, M.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2008
Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
The localization of bacterial cell, pattern of colonization, and survival of Methylobacterium suomiense CBMB120 in the rhizosphere of rice and tomato plants were followed by confocal laser scanning, scanning electron microscopy, and selective plating. M. suomiense CBMB120 was tagged with green fluorescent protein (gfp), and inoculation was carried out through seed source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!