Methane generation in permafrost sediments.

Dokl Biol Sci

Institute of Physicochemical and Biological Problems in Soil Sciences, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290 Russia.

Published: November 2002

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015366613580DOI Listing

Publication Analysis

Top Keywords

methane generation
4
generation permafrost
4
permafrost sediments
4
methane
1
permafrost
1
sediments
1

Similar Publications

Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans.

FEBS J

January 2025

Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland.

Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales.

View Article and Find Full Text PDF

Georgina Mills discusses a new project that aims to produce cows genetically selected for their low levels of methane emissions.

View Article and Find Full Text PDF

Modeling the Performance of an Anaerobic Moving Bed Biofilm Reactor.

Biotechnol Bioeng

January 2025

Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.

Sub-models representing transformation processes by microorganisms and hydrolases, a one-dimensional (1-D) biofilm, and a bioreactor were integrated to simulate organic-matter fermentation and methane (CH) production in an anaerobic moving bed biofilm reactor (AnMBBR). The integrated models correctly represented all experimental observations and identified mechanisms underlying how and why AnMBBR performance changed when the volumetric loading rate (VLR) of total chemical oxygen demand (TCOD) increased from 3.9 to 19.

View Article and Find Full Text PDF

Gallium: A Universal Promoter Switching CO Methanation Catalysts to Produce Methanol.

JACS Au

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zurich, Switzerland.

Hydrogenation of CO to methanol is foreseen as a key step to close the carbon cycle. In this study, we show that introducing Ga into silica-supported nanoparticles based on group 8-9 transition noble metals (M = Ru, Os, Rh, and Ir - Ga@SiO) switches their reactivity from producing mostly methane (sel. > 97%) to producing methanol (>50% CHOH/DME sel.

View Article and Find Full Text PDF

Application of bio-electrochemical systems for phosphorus resource recovery: Progress and prospects.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

This review focuses on applying bio-electrochemical systems (BES) for phosphorus (P) recovery. Microbial fuel cells (MFCs) degrade pollutants to generate electricity and recover P, with the structure and electrode materials playing a significant role in P recovery efficiency. Microbial electrolysis cells (MECs) recover P while simultaneously producing hydrogen or methane, with factors such as voltage and pH influencing performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!