Background And Purpose: Excitotoxic activation of glutamate receptors is currently thought to play a pivotal role in delayed neuronal death (DND) of highly vulnerable CA1 neurons in the gerbil hippocampus after transient global ischemia. Postischemic degeneration of these neurons can be prevented by "preconditioning" with a short sublethal ischemic stimulus. The present study was designed to test whether ischemic preconditioning is associated with specific alterations of ligand binding to excitatory glutamate and/or inhibitory gamma-aminobutyric acid (GABA)A receptors compared with ischemia severe enough to induce DND.
Methods: With the use of quantitative receptor autoradiography, postischemic ligand binding of [3H]MK-801 and [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) to excitatory N-methyl-D-aspartate (NMDA) and AMPA receptors as well as [3H]muscimol to inhibitory GABA(A) receptors in hippocampal subfields CA1, CA3, and the dentate gyrus were analyzed in 2 experimental paradigms. Gerbils were subjected to (1) a 5-minute ischemic period resulting in DND of CA1 neurons and (2) a 2.5-minute period of ischemia mediating tolerance induction.
Results: [3H]MK-801 and [3H]AMPA binding values to excitatory NMDA and AMPA receptors showed a delayed decrease in relatively ischemia-resistant CA3 and dentate gyrus despite maintained neuronal cell density. [3H]Muscimol binding to GABA(A) receptors in CA1 neurons was transiently but significantly increased after preconditioning but not after global ischemia with consecutive neuronal death.
Conclusions: Downregulation of ligand binding to glutamate receptors in relatively ischemia-resistant CA3 and dentate gyrus neurons destined to survive suggests marked synaptic reorganization processes despite maintained structural integrity. More importantly, upregulation of binding to inhibitory GABA(A) receptors in the hippocampus indicates a relative shift between inhibitory and excitatory neurotransmission that we suggest may participate in endogenous postischemic neuroprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.str.0000016404.14407.77 | DOI Listing |
J Neurosci
January 2025
Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima, Mexico 28040. Electronic address:
Tactile information from the whiskers (vibrissae) travels through the somatosensory cortex to the entorhinal cortex and the hippocampus, influencing development and psychological well-being. The lack of whiskers affects cognitive functions, spatial memory, neuronal firing, spatial mapping, and neurogenesis in the dorsal hippocampus. Recent studies underline the importance of tactile experiences in emotional health, noting that while tactile stimuli modulate the dorsal hippocampus, the effects of tactile deprivation on anxiety-like behaviors and neural activity in regions like the ventral hippocampus and amygdala are less understood.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
The hippocampus has a known role in learning and memory, with the ventral subregion supporting many learning tasks involving affective responding, including fear conditioning. Altered neuronal intrinsic excitability reflects experience-dependent plasticity that supports learning-related behavioral changes. Such changes have previously been observed in the dorsal hippocampus following fear conditioning, but little work has examined the effect of fear conditioning on ventral hippocampal intrinsic plasticity.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFDiverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!