There has been substantial evidence for more than three decades that the major psychiatric illnesses such as schizophrenia, bipolar disorder, autism, and alcoholism have a strong genetic basis. During the past 15 years considerable effort has been expended in trying to establish the genetic loci associated with susceptibility to these and other mental disorders using principally linkage analysis. Despite this, only a handful of specific genes have been identified, and it is now generally recognized that further advances along these lines will require the analysis of literally hundreds of affected individuals and their families. Fortunately, the emergence in the past three years of a number of new approaches and more effective tools has given new hope to those engaged in the search for the underlying genetic and environmental factors involved in causing these illnesses, which collectively are among the most serious in all societies. Chief among these new tools is the availability of the entire human genome sequence and the prospect that within the next several years the entire complement of human genes will be known and the functions of most of their protein products elucidated. In the meantime the search for susceptibility loci is being facilitated by the availability of single nucleotide polymorphisms (SNPs) and by the beginning of haplotype mapping, which tracks the distribution of clusters of SNPs that segregate as a group. Together with high throughput DNA sequencing, microarrays for whole genome scanning, advances in proteomics, and the development of more sophisticated computer programs for analyzing sequence and association data, these advances hold promise of greatly accelerating the search for the genetic basis of most mental illnesses while, at the same time, providing molecular targets for the development of new and more effective therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.neuro.25.112701.142853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!