The most frequent toxigenic fungi in Europe are Aspergillus, Penicillium and Fusarium species. They produce aflatoxin B1 transformed into aflatoxin M1 found in the milk, as well as Ochratoxins and Zearalenone, Fumonisin B1, T-2 toxin, HT-2 toxin and deoxynivalenol (vomitoxin), which are of increasing concern in human health. These mycotoxins are under continuous survey in Europe, but the regulatory aspects still need to be set up and/or harmonised at European level. They are found in foodstuffs and are not destroyed by normal industrial processing or cooking since they are heat-stable. Some of their metabolites are still toxic and may be involved in human diseases. Their toxic effects (liver, kidney and hematopoetic toxicity, immune toxicity, reproduction toxicity, foetal toxicity and teratogenicity, and mainly carcinogenicity) are mostly known in experimental models, the extrapolation to humans being always inaccurate. The inaccuracy of extrapolation to humans may be explained by the lack of adequate food consumption data, lack of knowledge about relative health risks associated with specifically proposed limits and by the possibility of synergism with other mycotoxins present in the same food commodities. Other pathological causes are viral hepatitis, immune or hormonal deficiencies or organ dysfunction. Even when a specific biomarker of a given mycotoxin is identified in humans, it remains difficult to establish the relation with a given illness, because of genetic polymorphism and the possible beneficial influence of diet, and because other environmental toxicants may well interfere. The acceptable daily intake limits are mostly based on animal data and may be too high, due to the differences in the sensitivity of different animal species. The prevention involves first reduction of mycotoxin levels in foodstuffs and further increasing the intake of diet components such as vitamins, antioxidants and substances known to prevent carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4274(01)00479-9 | DOI Listing |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDFBiotechnol Lett
January 2025
Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.
View Article and Find Full Text PDFJ Cancer Surviv
January 2025
Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
Purpose: Radiotherapy (RT) for oropharyngeal cancer (OPC) can lead to late toxicity. Fatigue is a known debilitating issue for many cancer survivors, yet prevalence and severity of long-term fatigue in patients treated for OPC is unknown.
Method: As part of a mixed-methods study, fatigue in OPC patients ≥ 2 years post RT + / - chemotherapy was evaluated.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.
Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!