A denitrifying bacterium, strain YG1, capable of degrading pyrrolidine under denitrifying conditions, was isolated. On the basis of phenotypic and phylogenetic characteristics, it was identified as a member of the genus Pseudomonas. During the anaerobic degradation of pyrrolidine, YG1 reduced a stoichiometric amount of nitrate to nitrogen gas, demonstrating that the degradation of pyrrolidine is coupled with respiratory nitrate reduction. YG1 also degraded pyrrolidine with a higher degradation rate under aerobic conditions than under denitrifying conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11211.x | DOI Listing |
J Hazard Mater
December 2024
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling.
View Article and Find Full Text PDFWater Res
December 2024
Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:
As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:
In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:
This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China.
Denitrifying bacteria, particularly nirK- and nirS-type, are functionally equivalent and could occupy different niches, but their community assembly mechanisms and responses to environmental heterogeneity are poorly understood in eutrophic lakes. In this study, we investigated the community assembly mechanisms of nirK- and nirS-type denitrifying bacteria and clarified their responses to sediments environmental factors in Lake Taihu, China. The quantitative real-time PCR and Illumina HiSeq-based sequencing revealed that the abundance and composition of two types of denitrifying bacterial communities varied among different sites in the sediments of Lake Taihu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!