The cytokine inducing capacity of the vaccine vector pcDNA3, a methylated form of the plasmid, and pcDNA3 encoding porcine interleukin (IL)-6 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was studied in pigs, using a model with tissue chambers implanted subcutaneously. The production of interferon (IFN)-alpha, IFN-gamma, IL-6 and GM-CSF was studied at local (tissue chamber fluid (TCF)) and systemic (serum) levels during 3 days post-injection. All forms of the plasmid, except the methylated, induced a transient local production of IFN-alpha but no plasmid-induced production of IFN-gamma, GM-CSF or IL-6 could be detected after injection of the plasmids. The IFN-alpha response increased markedly at repeated injections of pcDNA3. This IFN-alpha inducing capacity of the plasmid is likely to affect immune responses at DNA vaccination of pigs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-2427(02)00024-7 | DOI Listing |
Viruses
January 2025
Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil.
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.
View Article and Find Full Text PDFViruses
December 2024
School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia.
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.
View Article and Find Full Text PDFPharmaceutics
January 2025
NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC).
Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect.
Pathogens
January 2025
Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!