Cephalosporins in veterinary medicine - ceftiofur use in food animals.

Curr Top Med Chem

Pharmacia Animal Health, Pharmacia Corp., 7000 Portage Road, Kalamazoo, MI 49001, USA.

Published: July 2002

Cephalosporins are an important class of antibacterial agents in use today for both humans and animals. Four generations of cephalosporins have evolved, all of which contain the beta-lactam sub-structure first found in penicillin. The range of cephalosporins available for use in food-producing animals, which is the subject of this review, is limited compared to humans. A few first- and second-generation cephalosporins are approved worldwide strictly for treatment of mastitis infections in dairy cattle. A third-generation cephalosporin, ceftiofur, and a fourth-generation cephalosporin, cefquinome, have been developed strictly for veterinary use. Cefquinome has been approved in several countries for the treatment of respiratory disease in cattle and swine, foot rot in cattle and for mastitis in dairy cattle. Ceftiofur has worldwide approvals for respiratory disease in swine, ruminants (cattle, sheep and goats) and horses and has also been approved for foot rot and metritis infections in cattle. Ceftiofur has also been approved in various countries for early mortality infections in day-old chicks and turkey poults. This review summarizes cephalosporin use in general terms, and provides an overview of ceftiofur, in terms of its spectrum of activity, indications, metabolism, and degradation in the environment. The safety of ceftiofur is also reviewed, with respect to food-animal residues, rapid metabolism and degradation, and non-persistence of ceftiofur in the environment. The environmental fragility of cephalosporins have not been explored generally, but may be an important characteristic of this antibiotic class with respect to safety of use in animals.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026023393679DOI Listing

Publication Analysis

Top Keywords

dairy cattle
8
approved countries
8
respiratory disease
8
foot rot
8
cattle ceftiofur
8
metabolism degradation
8
ceftiofur
7
cephalosporins
6
cattle
6
cephalosporins veterinary
4

Similar Publications

Source segregation and treatment of urine and faeces from dairy cattle reduces GHG and NH emissions in covered storage.

J Environ Manage

January 2025

Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.

Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.

View Article and Find Full Text PDF

Background: Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition.

View Article and Find Full Text PDF

The number of beef × dairy animals entering feedlots has increased, but the response of beef × dairy cattle to growth-promoting implants has not been well characterized. The objective of this study was to evaluate the effects of breed type and implant administration on live performance, carcass characteristics, sera metabolites, and immunohistochemical (IHC) outcomes. Forty-eight steers (average body weight [BW] = 417±22 kg) were sorted by breed into groups of predominantly Angus (B), black-hided beef × primarily Holstein (B×D), or Holstein (D), and half of the steers within each breed type were administered a steroidal implant.

View Article and Find Full Text PDF

Supplementation with serine-enriched non-essential amino acids from minimum essential medium promotes blastocyst development of in vitro-fertilized bovine embryos.

J Reprod Dev

December 2024

Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ibaraki, 305-0901, Japan.

Article Synopsis
  • To produce high-quality embryos, it's crucial to meet a set of four criteria related to early development and embryo shape.
  • Non-essential amino acids, particularly serine, are vital in the culture of bovine embryos; higher concentrations of serine (1,000 µM) significantly boost the formation of compliant blastocysts compared to the standard 100 µM.
  • The increase in serine aids in DNA methylation processes essential for embryo growth, while inhibiting serine metabolism leads to fewer methyl donors and reduced blastocyst formation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!