Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A considerable body of evidence has accumulated in recent years implicating the beta-amyloid protein (Abeta) in the etiology of Alzheimer s disease (AD). The highly hydrophobic Abeta can nucleate and form neurotoxic fibrils that are the principal components of the cerebral plaques characteristic of AD. Abeta is formed from the amyloid-beta precursor protein (APP) through two protease activities. First, beta-secretase cleaves APP at the Abeta N-terminus, resulting in a soluble, secreted APP derivative (beta-APPs) and a 12 kDa membrane-retained C-terminal fragment. The latter is further processed to Abeta by gamma secretases, which cleave within the single transmembrane region. Other APP molecules can be cleaved by alpha-secretase within the Abeta region, thus precluding Abeta formation. Both beta- and gamma- secretase have become prime targets for the development of therapeutic agent that reduce Abeta production. Beta-secretase has recently been identified as a new membrane-anchored aspartyl protease in the cathepsin D family. Inhibitor profiling, site-directed mutagenesis, and affinity labeling together have suggested that the multi-pass presenilins are gamma-secretases, novel intramembrane-cleaving aspartyl proteases activated through autoproteolysis. In this article, we review the current knowledge of gamma-secretase biochemistry and cell biology and the development of inhibitors of this important therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867023370185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!