In pioneering studies on the 31P NMR spectra of MgADP bound to the "molecular motor" myosin subfragment 1 (S1) in the temperature range of 0 to 25 degrees C, Shriver and Sykes [Biochemistry 20 (1981) 2004-2012/6357-6362; Biochemistry 21 (1982) 3022-3028], proposed that MgADP binds to myosin S1 as a mixture of two interconvertible conformers with different chemical shifts for the beta-P resonance of the S1-bound MgADP and that the concentrations of these conformers are related by an equilibrium constant K(T). Their model implied that the weighted average of the chemical shifts of the beta-P(MgADP) for S1-bound MgADP asymptotically approaches a high temperature limit. Here, and in our earlier paper [K. Konno, K. Ue, M. Khoroshev, H., Martinez, B.D. Ray, M.F. Morales, Proc. Natl. Acad. Sci. USA 97 (2000) 1461-1466], we report experimental similarities to Shriver and Sykes, but diverge from them (especially at 0 degrees C) in not finding two distinct peaks and in finding that the average chemical shift does not change with temperature. Our observations can be explained by chemical exchange of beta-P(MgADP) of S1-bound MgADP between two nearly energetically equivalent environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0003-9861(02)00077-2DOI Listing

Publication Analysis

Top Keywords

s1-bound mgadp
12
31p nmr
8
myosin subfragment
8
shriver sykes
8
chemical shifts
8
average chemical
8
beta-pmgadp s1-bound
8
mgadp
6
changes 31p
4
nmr spectrum
4

Similar Publications

We have studied the mechanism of activation of native cardiac thin filaments by calcium and rigor myosin. The acceleration of the rate of 2'-deoxy-3'-O-(N-methylanthraniloyl)ADP (mdADP) dissociation from cardiac myosin-S1-mdADP-P(i) and cardiac myosin-S1-mdADP by native cardiac muscle thin filaments was measured using double mixing stopped-flow fluorescence. Relative to inhibited thin filaments (no bound calcium or rigor S1), fully activated thin filaments (with both calcium and rigor-S1 bound) increase the rate of product dissociation from the physiologically important pre-power stroke myosin-mdADP-P(i) by a factor of ∼75.

View Article and Find Full Text PDF

Background: Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in causing Familial Hypertrophic Cardiomyopathy (FHC). Mutations in the beta-myosin heavy chain (MHC) remain among the most common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and mechanical properties compared to wild-type myosin.

View Article and Find Full Text PDF

In pioneering studies on the 31P NMR spectra of MgADP bound to the "molecular motor" myosin subfragment 1 (S1) in the temperature range of 0 to 25 degrees C, Shriver and Sykes [Biochemistry 20 (1981) 2004-2012/6357-6362; Biochemistry 21 (1982) 3022-3028], proposed that MgADP binds to myosin S1 as a mixture of two interconvertible conformers with different chemical shifts for the beta-P resonance of the S1-bound MgADP and that the concentrations of these conformers are related by an equilibrium constant K(T). Their model implied that the weighted average of the chemical shifts of the beta-P(MgADP) for S1-bound MgADP asymptotically approaches a high temperature limit. Here, and in our earlier paper [K.

View Article and Find Full Text PDF

Reactions involving proteins frequently involve large changes in volume, which allows the equilibrium position to be perturbed by changes in pressure. Rapid changes in pressure can thus be used to initiate relaxation in pressure; however, this approach is seldom used, because it requires specialized equipment. We have built a microvolume (50 microl) pressure-jump apparatus, powered by a piezoelectric actuator, based on the original design of Clegg and Maxfield [(1976) Rev.

View Article and Find Full Text PDF

Site-specific mutations in the myosin binding sites of actin affect structural transitions that control myosin binding.

Biochemistry

November 2001

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, USA.

We have examined the effects of actin mutations on myosin binding, detected by cosedimentation, and actin structural dynamics, detected by spectroscopic probes. Specific mutations were chosen that have been shown to affect the functional interactions of actin and myosin, two mutations (4Ac and E99A/E100A) in the proposed region of weak binding to myosin and one mutation (I341A) in the proposed region of strong binding. In the absence of nucleotide and salt, S1 bound to both wild-type and mutant actins with high affinity (K(d) < microM), but either ADP or increased ionic strength decreased this affinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!