We isolated a strain from hop-resistant Lactobacillus hrevis ABBC45, which had lost a plasmid (pRH45) harboring a putative hop resistance gene, horA. The hop resistance level of this horA-deficient strain, named ABBC45(C), was initially low but gradually induced by repeated growth in media containing progressively increasing levels of hop compounds. Although the hop resistance level was substantially lower than that of the hop-adapted wild type strain, hop-adapted ABBC45(C) (ABBC45(CR)) was still capable of growing in beer, suggesting ABBC45 possesses at least two hop resistance mechanisms. Hop resistance acquired by ABBC45(CR) gradually diminished to the pre-adapted level, when the strain was grown repeatedly in the absence of hop compounds. ABBC45(CR) was found to be cross-resistant to several structurally unrelated drugs, including ethidium bromide, daunomycin and nisin. In addition, ABBC45(CR) was shown to extrude ethidium in an energy-dependent manner, while ABBC45(C) did not show such activity. This indicates that the efflux pump was induced by adaptation to hop compounds. The efflux activity of ethidium was reduced by the addition of hop compounds, suggesting hop compounds are also the substrate of the efflux pump. It was also shown that the efflux activity was completely dissipated with the abolition of proton motive force (PMF). These results, taken together, suggest the hop resistance mechanism of ABBC45(C) is mediated by PMF-dependent multidrug efflux pump.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-1605(02)00016-8DOI Listing

Publication Analysis

Top Keywords

hop resistance
28
hop compounds
20
hop
12
efflux pump
12
resistance mechanism
8
resistance level
8
efflux activity
8
resistance
7
compounds
5
efflux
5

Similar Publications

Access of drugs to the central nervous system is limited by the blood-brain barrier, and this in turn affects drug efficacy/toxicity. To date, most drug discovery optimization paradigms have relied heavily on in vitro transporter assays and preclinical species pharmacokinetic evaluation to provide a qualitative assessment of human brain penetration. Because of the lack of human brain pharmacokinetic data, mechanistic models for preclinical species, combined with in vitro and in silico data, are useful for translation to human.

View Article and Find Full Text PDF

Philipp, NM, Blackburn, SD, Cabarkapa, D, and Fry, AC. The effects of a low-volume, high-intensity pre-season micro-cycle on neuromuscular performance in collegiate female basketball players. J Strength Cond Res 38(12): 2136-2146, 2024-The use of stretch-shortening cycle (SSC)-based measures of vertical jump performance to monitor responses to training exposures is common practice in sport science.

View Article and Find Full Text PDF

Broad-spectrum crop protection technologies, such as abamectin and bifenthrin, are globally relied upon to curb the existential threats from economic crop pests such as the generalist herbivore Koch (TSSM). However, the rising cost of discovering and registering new acaricides, particularly for specialty crops, along with the increasing risk of pesticide resistance development, underscores the urgent need to preserve the efficacy of currently registered acaricides. This study examined the overall genetic mechanism underlying adaptation to abamectin and bifenthrin in populations from commercial hop fields in the Pacific Northwestern region of the USA.

View Article and Find Full Text PDF

Malaria remains a serious global health challenge, yet treatment and control programs are threatened by drug resistance. Dihydroorotate dehydrogenase (DHODH) was clinically validated as a target for treatment and prevention of malaria through human studies with DSM265, but currently no drugs against this target are in clinical use. We used structure-based computational tools including free energy perturbation (FEP+) to discover highly ligand efficient, potent, and selective pyrazole-based DHODH inhibitors through a scaffold hop from a pyrrole-based series.

View Article and Find Full Text PDF

This study aimed to examine the effects of two different complex training protocols on physical performance in highly-trained youth basketball players. Fourteen adolescent players participated in twice-weekly sessions over eight weeks, following either the Drop Jump protocol (n = 7) or the Tic-tac protocol (n = 7), performing 1-3 sets of 8-9 exercises. Physical performance was assessed before and after the intervention using jumping tests (CMJ, squat, 10-5 hop jumps), change-of-direction speed (5-10-5), sprinting (0-20 meters), and muscular strength (isometric midthigh pull) tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!