VIP and pituitary adenylate cyclase-activating polypeptide (PACAP) are two regulatory peptides that possess remarkable amino acid sequence homology and act through common receptors, named PAC(1), VPAC(1), and VPAC(2). PAC(1) receptor is selective for PACAP, whereas VPAC(1) and VPAC(2) receptors bind both VIP and PACAP. We have investigated the expression and function of VIP, PACAP, and their receptors in the zona glomerulosa (ZG), zonae fasciculata and reticularis, and adrenal medulla (AM) of the human adrenal cortex. RT-PCR and RIA detected VIP and PACAP expression exclusively in AM cells. RT-PCR demonstrated the presence of PAC(1) mRNA only in AM and of VPAC(1) and VPAC(2) mRNAs in both ZG and AM cells. VIP and PACAP concentration-dependently increased aldosterone and catecholamine secretion from cultured ZG and AM cells. The catecholamine response to both peptides was higher than the aldosterone response, and the secretagogue action of PACAP was more intense than that of VIP. The aldosterone response of cultured ZG cells to VIP or PACAP was unaffected by the PAC(1) receptor antagonist PACAP-(6-38) (PAC(1)-A), but was significantly decreased by the VPAC(1) receptor antagonist [Ac-His(1),D-Phe(2),Lys(15),Arg(16)]VIP-(3-7),GH-releasing factor-(8-27)-NH(2) (VPAC(1)-A). The catecholamine response of cultured AM cells to VIP was lowered by VPAC(1)-A and unaffected by PAC(1)-A; conversely, the catecholamine response to PACAP was reduced by both PAC(1)-A and VPAC(1)-A. Simultaneous exposure to both antagonists did not abolish the catecholamine response to PACAP. Collectively, our findings allow us to conclude that in human adrenals 1) VIP and PACAP biosynthesis exclusively occurs in AM cells; 2) ZG cells are provided with functional VPAC(1) and VPAC(2) receptors, whose activation by VIP or PACAP elicits a moderate aldosterone response; 3) AM cells possess PAC(1), VPAC(1), and VPAC(2) receptors, whose activation evokes a marked catecholamine response; and 4) the catecholamine response to PACAP is more intense than that to VIP, because it is mediated by all subtypes of VIP/PACAP receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jcem.87.6.8571DOI Listing

Publication Analysis

Top Keywords

vip pacap
28
catecholamine response
24
vpac1 vpac2
20
pacap
13
vpac2 receptors
12
cells vip
12
cultured cells
12
aldosterone response
12
response pacap
12
vip
11

Similar Publications

The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge.

View Article and Find Full Text PDF

Estrogens impair hypophagia and hypothalamic cell activation induced by vasoactive intestinal peptide, but not by pituitary adenylate cyclase-activating polypeptide.

Peptides

January 2025

Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil. Electronic address:

Article Synopsis
  • The study investigated how estradiol affects food intake and receptor expression in postmenopausal rats, particularly looking at the neuropeptides VIP and PACAP in specific hypothalamic areas.
  • Results showed that estradiol reduced the expression of the VPAC2 receptor and disrupted the hypophagic (appetite-reducing) effects of VIP, while PACAP continued to suppress food intake.
  • Additionally, estradiol altered plasma glucose and free fatty acid levels in these rats, suggesting different mechanisms in how VIP and PACAP influence energy homeostasis in the context of estrogen loss.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the relationship between post-traumatic stress disorder (PTSD) and migraines, focusing on its prevalence in patients with episodic migraines (EM) and chronic migraines (CM).
  • The research involved 116 patients, finding that PTSD was more common in those with chronic migraines, and it significantly affected their quality of life and comorbidities like anxiety and depression.
  • The findings highlight the need for further studies to explore the impact of PTSD on migraines, particularly in cases linked to traumatic life events such as sexual violence.
View Article and Find Full Text PDF
Article Synopsis
  • BDNF plays an important role in brain function and may help with pain and depression; this study tested its effectiveness against migraines using an animal model.
  • Researchers administered two doses of recombinant human BDNF (rhBDNF) to rats with pain induced by NTG injections, measuring pain response and changes in brain-related neuropeptides and cytokine levels.
  • Results showed that rhBDNF significantly reduced migraine-related pain and altered gene expression similarly to the migraine medication sumatriptan, indicating its potential as a non-invasive migraine treatment.
View Article and Find Full Text PDF

Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!