Self-diffusion of polymers in cartilage as studied by pulsed field gradient NMR.

Biophys Chem

Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Liebigstr. 27, Leipzig, Germany.

Published: June 2002

Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) was used to investigate the self-diffusion behaviour of polymers in cartilage. Polyethylene glycol and dextran with different molecular weights and in different concentrations were used as model compounds to mimic the diffusion behaviour of metabolites of cartilage. The polymer self-diffusion depends extremely on the observation time: The short-time self-diffusion coefficients (diffusion time Delta approximately 15 ms) are subjected to a rather non-specific obstruction effect that depends mainly on the molecular weights of the applied polymers as well as on the water content of the cartilage. The observed self-diffusion coefficients decrease with increasing molecular weights of the polymers and with a decreasing water content of the cartilage. In contrast, the long-time self-diffusion coefficients of the polymers in cartilage (diffusion time Delta approximately 600 ms) reflect the structural properties of the tissue. Measurements at different water contents, different molecular weights of the polymers and varying observation times suggest that primarily the collagenous network of cartilage but also the entanglements of the polymer chains themselves are responsible for the observed restricted diffusion. Additionally, anomalous restricted diffusion was shown to occur already in concentrated polymer solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-4622(02)00078-9DOI Listing

Publication Analysis

Top Keywords

molecular weights
16
polymers cartilage
12
self-diffusion coefficients
12
pulsed field
8
field gradient
8
diffusion time
8
time delta
8
water content
8
content cartilage
8
weights polymers
8

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

The aging population necessitates a critical need for medical devices, where polymers-based surface lubrication coating is essential for optimal functionality. In fact, lubrication and mechanical requirements vary depending on the service environment of different medical devices. Until now, key mean is still blank for general preparation of hydrophilic polymers-based lubrication coatings with on-demand mechanics and lubricity.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!