Face recognition by hand.

Percept Psychophys

Queen's University, Kingston, Ontario, Canada.

Published: April 2002

We investigated participants' ability to identify and represent faces by hand. In Experiment 1, participants proved surprisingly capable of identifying unfamiliar live human faces using only their sense of touch. To evaluate the contribution of geometric and material information more directly, we biased participants toward encoding faces more in terms of geometric than material properties, by varying the exploration condition. When participants explored the faces both visually and tactually, identification accuracy did not improve relative to touch alone. When participants explored masks of the faces, thereby eliminating material cues, matching accuracy declined substantially relative to tactual identification of live faces. In Experiment 2, we explored intersensory transfer of face information between vision and touch. The findings are discussed in terms of their relevance to haptic object processing and to the face-processing literature in general.

Download full-text PDF

Source
http://dx.doi.org/10.3758/bf03194708DOI Listing

Publication Analysis

Top Keywords

geometric material
8
participants explored
8
faces
6
face recognition
4
recognition hand
4
hand investigated
4
investigated participants'
4
participants' ability
4
ability identify
4
identify represent
4

Similar Publications

Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.

View Article and Find Full Text PDF

Probing Berry Phase Effect in Topological Surface States.

Phys Rev Lett

December 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.

View Article and Find Full Text PDF

Distorting crack-front geometry for enhanced toughness by manipulating bioinspired heterogeneity.

Nat Commun

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, China.

Control of crack propagation is crucial to make tougher heterogeneous materials. As a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations. While the behavior of smooth cracks with straight fronts in homogeneous materials is well understood, the toughening by rough cracks with tortuous fronts in heterogeneous materials remains unsolved.

View Article and Find Full Text PDF

During the transition from the Pleistocene to the Holocene and in the early Holocene period, hunter-gatherer communities across tropical South America deployed a range of technological strategies to adapt to diverse environmental conditions. This period witnessed a rich tapestry of technological practices, from enduring, widely disseminated tools to local and sporadically utilized technologies, shaping a multifaceted landscape of technological traditions. Lithic technology during this period was mainly marked by localized sourcing of raw materials, the use of multifunctional tools, a variety of projectile point designs, and the frequently utilization of unifacial shaping technology.

View Article and Find Full Text PDF

Epitaxial Stabilization of a Pyrochlore Interface between Weyl Semimetal and Spin Ice.

Nano Lett

January 2025

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.

Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!