Autophagy is a catabolic membrane-trafficking mechanism involved in cell maintenance and development. Most components of autophagy also function in the cytoplasm to vacuole targeting (Cvt) pathway, a constitutive biosynthetic pathway required for the transport of aminopeptidase I (Ape1). The protein components of autophagy and the Cvt pathway include a putative complex composed of Apg1 kinase and several interacting proteins that are specific for either the Cvt pathway or autophagy. A second required complex includes a phosphatidylinositol (PtdIns) 3-kinase and associated proteins that are involved in its activation and localization. The majority of proteins required for the Cvt and autophagy pathways localize to a perivacuolar pre-autophagosomal structure. We show that the Cvt13 and Cvt20 proteins are required for transport of precursor Ape1 through the Cvt pathway. Both proteins contain phox homology domains that bind PtdIns(3)P and are necessary for membrane localization to the pre-autophagosomal structure. Functional phox homology domains are required for Cvt pathway function. Cvt13 and Cvt20 interact with each other and with an autophagy-specific protein, Apg17, that interacts with Apg1 kinase. These results provide the first functional connection between the Apg1 and PtdIns 3-kinase complexes. The data suggest a role for PtdIns(3)P in the Cvt pathway and demonstrate that this lipid is required at the pre-autophagosomal structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754692PMC
http://dx.doi.org/10.1074/jbc.M204736200DOI Listing

Publication Analysis

Top Keywords

cvt pathway
24
pre-autophagosomal structure
16
cvt13 cvt20
12
cytoplasm vacuole
8
vacuole targeting
8
pathway
8
pathway proteins
8
components autophagy
8
required transport
8
apg1 kinase
8

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Non-Thrombotic Filling Defects in Cerebral Veins and Sinuses: When Normal Structures Mimic a Disease.

Neurol Int

January 2025

Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.

Cerebral venous thrombosis (CVT) is a rare and potentially critical cerebrovascular disease involving intracranial dural sinuses and veins. The diagnosis is a stepwise pathway starting from clinical suspicion and employing several neuroradiological techniques, mainly Computed Tomography (CT)-based and Magnetic Resonance Imaging (MRI)-based modalities. The neuroradiological findings, both in the diagnostic phase and in the follow-up phase, may provide some results at risk for misdiagnosis.

View Article and Find Full Text PDF

Hydrogen Atom Abstraction Reaction from Silane with Hydrogen and Methyl Radicals: Rate Constants and Kinetic Isotopic Effects.

J Phys Chem A

December 2024

Departamento de Química, Instituto Tecnológico da Aeronáutica, São José dos Campos, São Paulo 12228-900, Brasil.

Article Synopsis
  • The study calculated thermal rate constants and kinetic isotope effects (KIEs) for two reactions involving SiH, using variational transition state theory with multidimensional tunneling corrections (VTST-MT).
  • The ωB97X-D and CCSD(T) methods were employed to determine the energy barriers and reaction energies, while CCSD(T)/CBS was used to enhance the calculations of thermal rate constants.
  • For the SiH + H reaction, results matched well with existing data, while the SiH + CH reaction provided new insights as there had been limited previous research on it.
View Article and Find Full Text PDF

Temperature-dependent kinetics of Criegee intermediate (CHOO) with 2-pentanone were performed at 258-318 K and 50 Torr using pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS) technique. The measured room temperature rate coefficient was (3.84 ± 0.

View Article and Find Full Text PDF

Quantum Chemistry Study on Cl-Initiated Reactions of 2-Chloropropane and 2-Methylpropanoyl Halogen (Cl, Br, F): Mechanism, Kinetics, and Atmospheric Implications.

J Phys Chem A

November 2024

Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.

Halogenated volatile organic compounds (HVOCs) pose significant bioaccumulative and toxicological risks, necessitating effective strategies for their removal. Here, we show, through a computational study employing density functional theory and coupled cluster methods, the detailed mechanism and kinetic properties of Cl-initiated degradation reactions of 2-chloropropane (2-CP, (CH)CHCl) and 2-methylpropanoyl halide ((CH)CHCOX, X = Cl, Br, F). The reaction rate constants of all the channels were calculated by the canonical variational transition state theory (CVT) with the correction of the small curvature tunneling effect (SCT) at 200-1000 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!