Structural basis and mechanism of the inhibition of the type-3 copper protein tyrosinase from Streptomyces antibioticus by halide ions.

J Biol Chem

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

Published: August 2002

The inhibition of the type-3 copper enzyme tyrosinase by halide ions was studied by kinetic and paramagnetic (1)H NMR methods. All halides are inhibitors in the conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) with apparent inhibition constants that follow the order I(-) < F(-) << Cl(-) < Br(-) at pH 6.80. The results show that the inhibition arises from the interaction of halide with both the oxidized (affinity F(-) > Cl(-) > Br(-) >> I(-)) and reduced (affinity I(-) > Br(-) > Cl(-) >> F(-)) enzyme. The paramagnetic (1)H NMR of the oxidized enzyme complexed with the halides is consistent with a direct interaction of halide with the type-3 site and shows that the (Cu-His(3))(2) coordination occurs in all halide-bound species. It is surmised that halides bridge both of the copper ions in the active site. Fluoride and chloride are shown to bind only to the low pH form of oxidized tyrosinase, explaining the strong pH dependence of the inhibition by these ions. We further show that p-toluic acid and the bidentate transition state analogue, Kojic acid, displace chloride from the oxidized active site, whereas the monodentate substrate analogue, p-nitrophenol, forms a ternary complex with the enzyme and the chloride ion. On the basis of the experimental results, a model is formulated for the inhibitor action and for the reaction of diphenols with the oxidized enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M202461200DOI Listing

Publication Analysis

Top Keywords

inhibition type-3
8
type-3 copper
8
halide ions
8
paramagnetic nmr
8
oxidized enzyme
8
active site
8
enzyme
5
structural basis
4
basis mechanism
4
inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!