Cellular immune responses mediated by CD8+ cytotoxic T-lymphocytes (CTL) and CD4+ helper T-lymphocytes (HTL) are needed to effectively control and clear many viral pathogens, including HIV-1. Thus, vaccines for HIV-1 capable of inducing CTL and HTL responses are now the focus of multiple academic and industry-based research and development programs. The use of defined, minimal CTL and HTL epitopes in vaccines has several potential advantages. Firstly, it is possible to use epitopes that are conserved thus targeting the majority of viral variants within a given clade or across clades. Secondly, epitopes from multiple viral structural or accessory gene products can be included in vaccines, which supports the induction cellular immune responses with significant breadth. Finally, dominance relationships between epitopes can be altered to increase immune recognition of subdominant epitopes. HTL and CTL epitopes from HIV-1 have recently been identified and characterized in numbers that are large enough to support their use in experimental vaccines. Initial studies with prototype DNA vaccines encoding epitopes indicate the need to include intracellular targeting sequences, to direct the encoded gene products to different cellular compartments, and amino acid spacer sequences between epitopes to optimize the processing, and subsequent presentation, of individual epitopes. Vaccines composed of CTL or HTL epitopes are now being developed for clinical testing.

Download full-text PDF

Source
http://dx.doi.org/10.2741/A730DOI Listing

Publication Analysis

Top Keywords

ctl htl
12
epitopes
10
cellular immune
8
immune responses
8
htl epitopes
8
epitopes vaccines
8
gene products
8
vaccines
6
ctl
5
htl
5

Similar Publications

Development of a novel multi-epitope mRNA vaccine candidate to combat SFTSV pandemic.

PLoS Negl Trop Dis

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.

Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) is a novel identified pathogen, despite two decades of research on SFTSV, the potential widespread threats pose a significant challenge for researchers in developing new treatment and prevention methods. In this present, we have developed a multi-epitope mRNA vaccine for SFTSV and valid it with in silico methods. We screened 9 immunodominant epitopes for cytotoxic T cells (CTL), 7 for helper T cells (HTL), and 8 for Linear B-cell (LBL) based on promising candidate protein Gn, Gc, Np, and NSs.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.

View Article and Find Full Text PDF

Development of a broad-spectrum epitope-based vaccine against Streptococcus pneumoniae.

PLoS One

January 2025

Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.

Streptococcus pneumoniae (SPN) is a significant pathogen causing pneumonia and meningitis, particularly in vulnerable populations like children and the elderly. Available pneumonia vaccines have limitations since they only cover particular serotypes and have high production costs. The emergence of antibiotic-resistant SPN strains further underscores the need for a new, cost-effective, broad-spectrum vaccine.

View Article and Find Full Text PDF

Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.

View Article and Find Full Text PDF

In Silico Subtractive Proteome Analysis to Design Multi-Epitope-Based Subunit Vaccine against .

J Microbiol Biotechnol

November 2024

Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.

is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!