Objectives: Repetitive transcranial magnetic stimulation (rTMS) has been tried therapeutically in a variety of neuropsychiatric disorders. Both, inhibition and activation of cortical areas may be achieved using different stimulation parameters. Using low-frequency rTMS (0.9 Hz), inhibition of cortical areas can be observed.
Methods: In the present study, 38 right-handed, healthy, normotensive subjects (aged 21-50 years, mean 30.2 years, SD=4.9; 17 women) were enrolled. Twenty-five participants received active rTMS (5 min of 0.9 Hz rTMS, stimulus intensity 90% of motor threshold) of the right dorsolateral prefrontal cortex. Sham stimulation (n=13 subjects) occurred in the same manner as active rTMS, except that the angle of the coil was at 45 degrees off the skull. Simultaneously, ipsilateral and contralateral maximal middle cerebral artery (MCA) flow velocity (and pulsatility index, PI) was monitored using transcranial Doppler sonography.
Results: In the group with active rTMS, maximal MCA flow velocity decreased from a baseline (before rTMS) of 101.6 cm/s (SD=26.0) to a mean of 92.6 cm/s (SD=23.7) immediately after rTMS, T=5.06, P<0.001. This equals a mean decrease of 9.0 cm/s (SD=8.3) or approximately 8.9% of baseline flow. Five and 10 min after rTMS, there was a return to baseline. PI significantly decreased 10 min after rTMS (mean difference -0.05, SD=0.05, T=2.29, P<0.05). In the contralateral MCA, maximal flow velocity tended to increase 10 min after rTMS (mean difference +7.4 cm/s, SD=17.5; T=-2.03, P=0.054). With sham rTMS, no significant changes occurred.
Conclusions: The results from our study support the hypothesis that low-frequency rTMS may influence cerebral blood flow (CBF) over short periods of time, inducing a temporary decrease of maximal CBF in the ipsilateral MCA followed by an increase in the contralateral MCA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1388-2457(02)00063-9 | DOI Listing |
Sci Rep
December 2024
Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Intraluminal prosthetic graft thrombus (IPT) has been described in case of endovascular aortic pathology repair. This study aimed to assess hemodynamic indicators associated with various anatomical morphologies following endovascular aortic repair (EVAR), aiming to offer further references for the choice of clinical therapy. Six model models (normal, iliac compression, aortic compression, aortoiliac compression, iliac distortion, and long-leg stent) were established based on common anatomical morphologies following EVAR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.
The actomyosin cytoskeleton, a protein assembly comprising actin fibers and the myosin molecular motor, drives various cellular dynamics through contractile force generation at high densities. However, the relationship between the density dependence of the actomyosin cytoskeleton and force-controlled ordered structure remains poorly understood. In this study, we measured contraction-driven flow generation by varying the concentration of cell extracts containing the actomyosin cytoskeleton and associated nucleation factors.
View Article and Find Full Text PDFSci Rep
December 2024
School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai, 200093, China.
Transjugular intrahepatic portosystemic shunt (TIPS) is a widely used surgery for portal hypertensive patients, whose potential postoperative complications are closely related to the hemodynamic condition of the portal venous system. The selection of shunt position in the surgery may affect the postoperative hemodynamics; however, it is difficult for clinical studies to investigate the influence. Therefore, this study aims to employ the computational model simulating TIPS to compare the hemodynamic differences resulting from different shunt positions, and also to investigate the influences of different geometrical model simplification strategies used in the TIPS simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, University of Gujrat, Gujrat, 50700, Pakistan.
This study is the application of a recurrent neural networks with Bayesian regularization optimizer (RNNs-BRO) to analyze the effect of various physical parameters on fluid velocity, temperature, and mass concentration profiles in the Darcy-Forchheimer flow of propylene glycol mixed with carbon nanotubes model across a stretched cylinder. This model has significant applications in thermal systems such as in heat exchangers, chemical processing, and medical cooling devices. The data-set of the proposed model has been generated with variation of various parameters such as, curvature parameter, inertia coefficient, Hartmann number, porosity parameter, Eckert number, Prandtl number, radiation parameter, activation energy variable, Schmidt number and reaction rate parameter for different scenarios.
View Article and Find Full Text PDFBMC Cardiovasc Disord
December 2024
Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
Backgrounds: Due to the high mortality and hospitalization rate in chronic heart failure (HF), it is of great significance to study myocardial nutrition conditions. Amino acids (AAs) are essential nutrient metabolites for cell development and survival. This study aims to investigate the associations and prognostic value of plasma branched-chain amino acid/aromatic amino acid ratio (Fischer's ratio, FR) in patients with left ventricular ejection fraction (LVEF) ≤ 50%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!