Toxicity testing in environmental monitoring: the role of enzymatic biosensors.

Ann Ist Super Sanita

Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.

Published: December 2002

Biological toxicity testing is a rapidly expanding field involving numerous bioanalytical techniques. The enzymatic biosensors are valuable screening tools to identify pollutants and/or toxic agents in the environment and/or in food matrices, thus representing a valid alternative to animal testing in analytical toxicology. Inhibition based biosensors here presented have been proved to represent alternative assays for the toxicity evaluation of warfare agents and endocrine disrupting chemicals as well as algal toxins (phycotoxins) in the contamined sea foods (mainly clams and other mollusks). Results obtained by inhibition studies performed by means of several enzymatic biosensors indicate the reliability of the proposed method and the possibility to extend such an experimental approach to other toxicants as a simple, rapid and cheap biotest, to be used easily also "on the spot".

Download full-text PDF

Source

Publication Analysis

Top Keywords

enzymatic biosensors
12
toxicity testing
8
testing environmental
4
environmental monitoring
4
monitoring role
4
role enzymatic
4
biosensors
4
biosensors biological
4
biological toxicity
4
testing rapidly
4

Similar Publications

Polysaccharides-Directed Biomineralization of Enzymes in Hierarchical Zeolite Imidazolate Frameworks for Electrochemical Detection of Phenols.

ACS Appl Mater Interfaces

January 2025

Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.

Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.

View Article and Find Full Text PDF
Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

Enzymatic cascade reactions are widely utilized in food security, environmental monitoring, and disease diagnostics, whereas their practical application was hindered due to their limited catalytic efficiency and intrinsic fragility to environmental influences. Herein, a compartmentalized dual-enzyme cascade nanoreactor was constructed in metal-organic frameworks (ZIF-8) by a shell-by-shell growth method. ZIF-8 provided a good microenvironment to maintain the activity of enzymes and protected them against harsh conditions.

View Article and Find Full Text PDF

Intramolecular distance-regulated G4 DNA enzymatic activity-based chromophotometric system for visual monitoring of diquat.

Anal Chim Acta

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.

Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!