Following separation of the seminiferous tubules from the interstitial cells in the rat testis, the amount of cytochrome P-450 and the activities of the cytochrome P-450-dependent enzymes, the 17alpha-hydroxylase and the C17-C20 lyase, were measured in the microsomes of the separated fractions. The amount of cytochrome P-450-dependent enzymes recovered in the microsomal fraction of the interstitial cells ranged from 71 to 86% of the whole testis. However, in some experiments lower recoveries of the activities of the enzymes were attributed to the breakdown of cytochrome P-450 to cytochrome P-420. In all cases, less than 10% of the testicular cytochrome P-450 and the cytochrome P-450-dependent steroidogenic enzymes were found in the tubular microsomes. Moreover, the specific activities of the 17 alpha-hydroxylase and the C17-C20 lyase were found to be 10 to 30 times higher in the interstitial tissue than in the seminiferous tubules of the rat testis. From these results, we have concluded that cytochrome P-450 and the activities of the cytochrome P-450-dependent enzymes in the rat testis are predominantly, if not sole, located in the interstitial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-97-6-1587DOI Listing

Publication Analysis

Top Keywords

cytochrome p-450
20
cytochrome p-450-dependent
20
p-450-dependent enzymes
16
rat testis
16
p-450 cytochrome
12
interstitial cells
12
cytochrome
11
enzymes rat
8
seminiferous tubules
8
amount cytochrome
8

Similar Publications

Bone Disease Associated with Inactivating Aromatase Mutations and its Management.

Calcif Tissue Int

January 2025

Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria Alle Scotte, Siena, Italy.

Aromatase deficiency (ORPHA:91; OMIM: 613,546) is a rare, autosomal recessive disorder due to loss of function mutations in the CYP19A1 gene, described in both genders with an estimated incidence below 1/1000000. While in female the clinical manifestations generally occur at birth or in early infancy, and mainly involve sexual characteristics, in men clinical signs of aromatase deficiency mostly occur in puberty and especially in late puberty, so that diagnosis is generally established after the second decade due to tall stature, unfused epiphyses and reduced bone mass. Here we review the available information concerning the skeletal and extraskeletal phenotype and the clinical management of bone health in patients with aromatase CYP19A1 gene mutations.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Background: Accumulating evidence has shown the neuroprotective effects of estrogen on cognition function, for example delaying the cognitive deterioration in patients with Alzheimer's disease (AD). However, the clinical usage of estrogen in AD remains controversial. The cytochrome P450 aromatase encoded by CYP19A1, is a key enzyme catalyzing the C19 androgen conversion to C18 estrogen, which induces testosterone to estradiol and androstenedione to estrone.

View Article and Find Full Text PDF

Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor.

Physiol Plant

January 2025

Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.

Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).

View Article and Find Full Text PDF

Evaluation of machine learning algorithms and computational structural validation of CYP2D6 in predicting the therapeutic response to tamoxifen in breast cancer.

Eur Rev Med Pharmacol Sci

December 2024

Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Objective: CYP2D6 plays a critical role in metabolizing tamoxifen into its active metabolite, endoxifen, which is crucial for its therapeutic effect in estrogen receptor-positive breast cancer. Single nucleotide polymorphisms (SNPs) in the CYP2D6 gene can affect enzyme activity and thus impact tamoxifen efficacy. This study aimed to use machine learning algorithms (MLAs) to identify significant predictors of Breast Cancer-Free Interval (BCFI) and to apply bioinformatics tools to investigate the structural and functional implications of CYP2D6 SNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!