Compositional gradients in Gramineae genes.

Genome Res

Hangzhou Genomics Institute, Institute of Bioinformatics of Zhejiang University, Key Laboratory of Bioinformatics of Zhejiang Province, Hangzhou 310007, China.

Published: June 2002

In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage. The magnitudes of these gradients are large enough to hinder the annotation of the rice genome and to confound the detection of protein homologies across the monocot-eudicot divide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383739PMC
http://dx.doi.org/10.1101/gr.189102DOI Listing

Publication Analysis

Top Keywords

gramineae genes
8
compositional gradients
4
gradients gramineae
4
genes
4
genes study
4
study describe
4
describe property
4
property gramineae
4
genes monocot
4
monocot genes
4

Similar Publications

Mining genomic regions associated with stomatal traits and their candidate genes in bread wheat through genome-wide association study (GWAS).

Theor Appl Genet

January 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.

112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.

View Article and Find Full Text PDF

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. , a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application.

View Article and Find Full Text PDF

Background/objectives: Inflammatory bowel disease (IBD) is a chronic condition influenced by a variety of factors, including genetics, the environment, and gut microbiota. The incidence of IBD is increasing globally. Previous studies have shown that interactions between diet and gut microbiota influence the pathogenesis and treatment of IBD.

View Article and Find Full Text PDF

Identification and Genome Sequencing of Novel Virulent Strains of pv. Causing Rice Bacterial Blight in Zhejiang, China.

Pathogens

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China.

pv. () is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!