The existence and function of actin in the nucleus has been hotly debated for forty years. Recently, beta-actin was found to be a component of mammalian SWI/SNF-like BAF chromatin remodeling complexes and still more recently other SWI/SNF-related chromatin remodeling complexes in yeast, flies, and man. Although the function of actin in these chromatin remodeling complexes is only starting to be explored, the fact that actin is one of the most regulated proteins in the cell suggests that control of nuclear actin may be a critical regulatory point in the control of chromatin remodeling. Actin rapidly shuttles between the nucleus and the cytoplasm offering additional sites and modes of regulation. In addition, actin-related proteins (Arps) are also components of these chromatin remodeling complexes and have been implicated in transcriptional control in yeast. The observation that the BAF chromatin remodeling complex in which actin was originally identified, is also a human tumor suppressor complex necessary for the actions of the retinoblastoma protein indicates that the study of nuclear actin is likely to contribute to understanding cell growth control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.biochem.71.110601.135507 | DOI Listing |
Circ Res
January 2025
Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).
Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.
View Article and Find Full Text PDFFree Neuropathol
January 2024
NeuroMarkers, Houston, Texas, USA.
Glioblastoma is the most frequent and malignant primary brain tumor. Although the survival is generally dismal for glioblastoma patients, risk stratification and the identification of high-risk subgroups is important for prompt and aggressive management. The G1-G7 molecular subgroup classification based on the MAPK pathway activation has offered for the first time a non-redundant, all-inclusive classification of adult glioblastoma.
View Article and Find Full Text PDFRegen Ther
March 2025
Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs.
View Article and Find Full Text PDFMol Reprod Dev
January 2025
The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.
Echinoderms exhibit a wide range of reproductive strategies as adaptations to variable environments. The processes of gonadal development, germ cell differentiation, and spermatogenesis in echinoderms are crucial physiological processes that warrant further in-depth exploration. This review systematically summarizes research from early basic sciences to recent studies on male gonadal development and spermatogenesis, encompassing morphology, histology, physiology, cell biology, developmental biology, and evolutionary biology.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, USA.
Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!